2020 (25) | C. Erath and R. Schorr. Stable Non-symmetric Coupling of the Finite Volume Method and the Boundary Element Method for Convection-Dominated Parabolic-Elliptic Interface Problems, Comput. Methods Appl. Math. 20(2): 251-272, 2020. DOI: 10.1515/cmam-2018-0253 |
2020 (24) | C. Erath, G. Gantner, and D. Praetorius. Optimal convergence behavior of adaptive FEM driven by simple (h-h/2)-type error estimators, Comput. Math. Appl. 79(3): 623-642, 2020. DOI: 10.1016/j.camwa.2019.07.014 |
2019 (23) | C. Erath and D. Praetorius. Optimal adaptivity for the SUPG finite element method, Comput. Methods Appl. Mech. Engrg. 353: 308-327, 2019. DOI: 10.1016/j.cma.2019.05.028 |
2019 (22) | C. Erath and D. Praetorius. Adaptive vertex-centered finite volume methods for general second-order linear elliptic partial differential equations, IMA J. Numer. Anal. 39(2): 983-1008, 2019. DOI: 10.1093/imanum/dry006 |
2019 (21) | C. Erath and R. Schorr. A simple boundary approximation for the non-symmetric coupling of the finite element method and the boundary element method for parabolic-elliptic interface problems, Numerical Mathematics and Advanced Applications. ENUMATH 2017. Lecture Notes in Computational Science and Engineering, Springer, Volume 126, 993-1001, 2019. DOI: 10.1007/978-3-319-96415-7_94 |
2018 (20) | H. Egger, C. Erath, and R. Schorr. On the nonsymmetric coupling method for parabolic-elliptic interface problems, SIAM J. Numer. Anal. 56(6): 3510-3533, 2018. DOI: 10.1137/17M1158276 |
2017 (19) | C. Erath and R. Schorr. Comparison of adaptive non-symmetric and three-field FVM-BEM coupling, Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems, Springer Proceedings in Mathematics & Statistics, Volume 200, 337-345, 2017. DOI: 10.1007/978-3-319-57394-6_36 |
2017 (18) | C. Erath and D. Praetorius. Céa-type quasi-optimality and convergence rates for (adaptive) vertex-centered FVM, Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects, Springer Proceedings in Mathematics & Statistics, Volume 199, 215-223, 2017. DOI: 10.1007/978-3-319-57397-7_14 |
2017 (17) | C. Erath and R. Schorr. An adaptive non-symmetric finite volume and boundary element coupling method for a fluid mechanics interface problem, SIAM J. Sci. Comput. 39(3): A741-A760, 2017. DOI: 10.1137/16M1076721 |
2017 (16) | C. Erath, G. Of, and F.-J. Sayas. A non-symmetric coupling of the finite volume method and the boundary element method, Numer. Math. 135(3): 895-922, 2017. DOI: 10.1007/s00211-016-0820-3 |
2016 (15) | C. Erath and D. Praetorius. Adaptive vertex-centered finite volume methods with convergence rates, SIAM J. Numer. Anal. 54(4): 2228-2255, 2016. DOI: 10.1137/15M1036701 |
2016 (14) | C. Erath, M. A. Taylor, and R. D. Nair. Two conservative multi-tracer efficient semi-Lagrangian schemes for multiple processor systems integrated in a spectral element (climate) dynamical core, Commun. Appl. and Ind. Math., special issue on New trends in semi-Lagrangian methods, 7(3): 71-95, 2016. DOI: 10.1515/caim-2016-0023 |
2015 (13) | C. Erath. A nonconforming a posteriori estimator for the coupling of cell-centered finite volume and boundary element methods, Numer. Math. 131(3): 425-451, 2015. DOI: 10.1007/s00211-014-0694-1 |
2014 (12) | C. Erath. Comparison of two Couplings of the Finite Volume Method and the Boundary Element Method, Finite Volumes for Complex Applications VII - Methods and Theoretical Aspects, Springer Proceedings in Mathematics & Statistics, Volume 77, 255-263, 2014. DOI: 10.1007/978-3-319-05684-5_24 |
2014 (11) | C. Erath and R. D. Nair. A conservative multi-tracer transport scheme for spectral-element spherical grids, J. Comput. Phys. 256: 118-134, 2014. DOI: 10.1016/j.jcp.2013.08.050 |
2013 (10) | C. Erath. A posteriori error estimates and adaptive mesh refinement for the coupling of the finite volume method and the boundary element method, SIAM J. Numer. Anal. 51(3): 1777-1804, 2013. DOI: 10.1137/110854771 |
2013 (9) | C. Erath. A new conservative numerical scheme for flow problems on unstructured grids and unbounded domains, J. Comput. Phys. 245: 476-492, 2013. DOI: 10.1016/j.jcp.2013.03.055 |
2013 (8) | C. Erath, P. H. Lauritzen, and H. M. Tufo. On mass-conservation in high-order high-resolution rigorous remapping schemes on the sphere, Mon. Weather Rev. 141(6): 2128-2133, 2013. DOI: 10.1175/MWR-D-13-00002.1 |
2012 (7) | C. Erath, S. A. Funken, P. Goldenits, and D. Praetorius. Simple error estimations for Galerkin BEM for some hypersingular integral equation in 2D, Appl. Anal. 92(6): 1194-1216, 2013. DOI: 10.1080/00036811.2012.661045 |
2012 (6) | C. Erath, P. H. Lauritzen, J. H. Garcia, H. M. Tufo. Integrating a scalable and efficient semi-Lagrangian multi-tracer transport scheme in HOMME, Procedia Computer Science (ERA A-ranked) 9: 994-1003, 2012. DOI: 10.1016/j.procs.2012.04.106 |
2012 (5) | C. Erath. Coupling of the finite volume element method and the boundary element method: an a priori convergence result, SIAM J. Numer. Anal. 50(2): 574-594, 2012. DOI: 10.1137/110833944 |
2011 (4) | P. H. Lauritzen, C. Erath, and R. Mittal. On simplifying 'incremental remap'-based transport schemes, J. Comput. Phys., 230(22): 7957-7963, 2011. DOI: 10.1016/j.jcp.2011.06.030 |
2009 (3) | C. Erath, S. Ferraz-Leite, S. A. Funken, and D. Praetorius. Energy norm based a posteriori error estimation for boundary element methods in two dimensions, Appl. Numer. Math., 59(11): 2713-2734, 2009. DOI: 10.1016/j.apnum.2008.12.024 |
2008 (2) | C. Erath, S. A. Funken, and D. Praetorius. Adaptive Cell-Centered Finite Volume Method, Finite Volumes for Complex Applications V, Wiley (ISBN: 978-1-84821-035-6) , 359-366, 2008. |
2008 (1) | C. Erath and D. Praetorius. A posteriori error estimate and adaptive mesh refinement for the cell-centered finite volume method for elliptic boundary value problems, SIAM J. Numer. Anal., 47(1): 109-135, 2008. DOI: 10.1137/070702126 |