PROCEEDINGS OF THE TENTH INTERNATIONAL
MATHEMATICS EDUCATION AND SOCIETY CONFERENCE

Edited by

Jayasree Subramanian

Hyderabad, India
January 28th to February 2nd, 2019

MES10
MES10 Conference logo was designed to show the diversity of sites and contexts in which mathematics figures and mathematics education takes place in India: artists and artisans in whose work mathematics is embedded, women learning mathematics in adult education programmes, privileged children in urban setting with access to technology at their desks, socioeconomically marginalised children attending night school, sitting on the floor with lanterns to provide light, students in rural classrooms with bamboo walls. The logo bringing out the linguistic, religious, sociocultural, economic and regional differences of learners was designed by Mohd Junaid Siddique and Murchana Roychoudury.

MES 10 International Committee

Steering Committee

Local Organising Committee

Sharath Ananthamurthy, Prajit Basu, Raghava Reddy Chandri, S Najamul Hasan, B Sri Padmavathi, Jayasree Subramanian, Rajat Tandon

Acknowledgement

The conference organisers would like to acknowledge the support of University of Hyderabad and Telangana Social Welfare Residential Educational Institutions Society, Telangana.
CONTENTS

• Jayasree Subramanian
 INTRODUCTION TO MES10

INAUGURAL ADDRESS

• Farida Abdulla Khan
 RETHINKING MATHEMATICS EDUCATION IN THE CHANGING CONTEXT OF THE EDUCATION SECTOR IN INDIA

III PLENARY PAPERS

• Tanial Cabral and Roberto Baldino
 THE SOCIAL TURN AND ITS BIG ENEMY: A LEAP FORWARD

• George Joseph
 DIFFERENT WAYS OF KNOWING: STYLES OF ARGUMENT IN GREEK AND INDIAN MATHEMATICAL TRADITIONS

• Rochelle Gutierrez
 MATHEMATX: TOWARDS A WAY OF BEING

• Tony Trinick
 MATHEMATICS EDUCATION: ITS ROLE IN THE REVITALISATION OF INDIGENOUS LANGUAGES AND CULTURES

IV RESPONSE TO PLENARY PAPERS

• Yasmin Abtahi
 AN EXPENSIVE EXTERNAL PEACE AND THE ROLE OF MATHEMATICS EDUCATION IN RECLAIMING HUMANITY AND DIGNITY: A RESPONSE TO TRINICK

• Senthil Babu
 GROUNDING STYLES AND ARGUMENTS IN PRACTICES: A RESPONSE TO GEORGE JOSEPH

• Maisie Gholson
 NAVIGATING MATHEMATX ON SELFSAME LAND THROUGH THE SETTLER-NATIVE-SLAVE TRIAD IN THE U.S. CONTEXT: A RESPONSE TO ROCHELLE GUTIERREZ

• Brian Greer
 CONFRONTING THE BIG ENEMY: REACTION TO CABRAL AND BALDINO

• Anita Rampal
 CRAFTING NEW DISPOSITIONS IN MATHEMATICS: CHALLENGING DISPOSSESSION A RESPONSE TO ROCHELLE GUTIERREZ

• Kate le Roux
LANGUAGE IDEOLOGIES FOR UNDERSTANDING LANGUAGE FOR SCHOOL MATHEMATICS: A RESPONSE TO TRINICK

• **K Subramaniam**
CONSTRAINTS ON MATHEMATICS EDUCATION REFORM IN INDIA: A RESPONSE TO CABRAL AND BALDINO

V SYMPOSIA

• **Erika Bullock, Maisie Gholson, Gregory Larnell and Danny Martin**
RACE, MATHEMATICS EDUCATION, AND SOCIETY: TOWARDS GLOBAL PERSPECTIVES

• **Anna Chronaki, Gill Adams, Melissa Andrade, Gustavo Bruno, Fufy Demissie, Renato Marcone, Aldo Para, Hilary Povey, Dalene Swanson, Paola Valero, Ayse Yolcu**
UNFOLDING GLOBAL/LOCAL POLICIES, PRACTICES AND/OR HYBRIDS IN MATHEMATICS EDUCATION WORLDWIDE: UTOPIAS, PLEASURES, PRESSURES AND CONFLICTS

• **Roberta Hunter, Jodie Hunter, Bronwyn Gibbs and Trevor Bills**
JOINING THE PIECES OF THE TIVAEVAE TO ENACT STRENGTH-BASED MATHEMATICS LEARNING IN AOTEAROA, NEW ZEALAND.

• **Jasmine Ma, Maisie Gholson, Rochelle Gutiérrez, Molly Kelton and Maxine McKinney de Royston**
ONTOLOGICAL POSSIBILITIES OF MATHEMATICS IN MATHEMATICS EDUCATION: AN ACTIVITY-BASED EXPLORATION AND DISCUSSION

• **Renato Marcone, Aldo Parra, Arindam Bose, Rossi D'Souza, Jehad Alshwaikh and Magda González**
"CRISIS" - THE NEW NORMAL: FAKE (POST-FACTUAL) MATHEMATICS EDUCATION

• **Kate Le Roux, Annica Andersson, Lisa Darragh, Jayasree Subramanian and Luz Valoyes-Chávez**
LANGUAGE DIVERSITY AS A RESOURCE FOR KNOWLEDGE ABOUT MATHEMATICS EDUCATION AND SOCIETY

• **David Wagner, Annica Andersson and Beth Herbel-Eisenmann**
AVAILABLE POSITIONS, IDENTITIES AND DISCOURSES IN MATHEMATICS CLASSROOMS

VI PROJECT PRESENTATIONS

• **Yasmine Abtahi and Richard Barwell**
MIGRATION AND DIALOGUE IN MATHEMATICS CLASSROOMS

• **Melissa Adams, Deandrea Jones and Theodore Chao**
CRITICAL EARLY CHILDHOOD MATHEMATICS FOR CHILDREN OF COLOR
• Piata Allen
USING SHOW AND TELL SOFTWARE TO EXPLORE MĀORI WAYS OF COMMUNICATING MATHEMATICALLY IN MĀORI-MEDIUM PĀNGARAU/MATHEMATICS CLASSROOMS.

• Anna Chronaki and Irene Lazaridou
MATHEMATICS EDUCATION OUT IN THE RURAL SCAPE: EXPERIMENTING WITH RADICAL DEMOCRACY FOR COMMONS

• Atasi Das
ARTICULATING A CRITICAL NUMERACY: A NUMERACY OF RESISTANCE

• Jodie Hunter and Jodie Miller
CULTURAL INSIDER AND OUTSIDER PERSPECTIVES ON RESEARCH IN MATHEMATICS EDUCATION

• Brian Lawler
MATHEMATICS, EDUCATION, AND ANARCHISM

• Juuso Henrik Nieminen and Laura Tuohilampi
SELF-ASSESSMENT IN UNIVERSITY MATHEMATICS: SHAKING THE POWER STRUCTURES THROUGH UNIVERSAL DESIGN

• Hilary Povey, Gill Adams, Fufy Demissie and Anna Chronaki
INITIAL REPORT FROM THE PROJECT IN CITIZENSHIP AND MATHEMATICS (PICAM): MORAL AND POLITICAL DILEMMAS

• Célia Roncato
MEANING IN MATHEMATICS EDUCATION AND UNIVERSITY STUDENTS WITH DISABILITIES: CONCEPTUAL ENCOUNTERS

• Daniela Alves Soares
STUDENTS AT SOCIAL SUPPRESSION: A STUDY OF MEANING IN MATHEMATICAL LEARNING THROUGH FOREGROUNDS AND EMPOWERMENT

• Débora Vieira de Souza
MATHEMATICS IN ACTION AND PROBLEM BASED LEARNING: POSSIBILITIES IN HIGHER EDUCATION

RESEARCH PAPERS

• Annica Andersson and Joakim Olofsson
THE DESIRED MATH TEACHER IN UNIVERSITIES’ STUDY AND ASSESSMENT GUIDES

• Anette Bagger, Eva Norén, Lisa Boistrup and Christian Lundahl
DIGITIZED NATIONAL TESTS IN MATHEMATICS: A WAY OF INCREASING AND SECURING EQUITY?
• Arindam Bose and Renato Marcone
 NON-TYPICAL LEARNING SITES: A PLATFORM WHERE FOREGROUND INTERPLAYS WITH BACKGROUND

• David Bowers
 CRITICAL ANALYSIS OF WHITENESS IN A MATHEMATICS EDUCATION PROSEMINAR SYLLABUS

• David Bowers
 RHETORICAL EXPERIMENT IN DECENTERING HEGEMONIC MATHEMATICS: MATHEMATICS AND MATHEMATICAL PRACTICE AMONGST THE NACIREMA

• Karin Brodie
 TEACHER AGENCY IN PROFESSIONAL LEARNING COMMUNITIES

• Gustavo Bruno and Natalia Ruiz López
 PROBLEMATIZING “MATHEMATICS EDUCATION FOR SOCIAL JUSTICE”

• Mohan Chinnappan and Hanggyun Shin
 ACTIONS WITHIN THE ZONE OF PROXIMAL DEVELOPMENT: REPRESENTATIONS OF MATHEMATICS CONCEPT BY KOREAN TEACHERS

• Anna Chronaki and Dalene Swanson
 DE/MATHEMATISING THE POLITICAL IN MATHEMATICS EDUCATION: A FEMINIST DE/POSTCOLONIALITY VIEW

• Laurel Cooley
 RACIALIZED SYMBOLIC VIOLENCE - AN EXAMPLE

• Bronislaw Czarnocha
 NOTES FROM THE FIELD: CREATIVITY KIDNAPPED

• Lisa Darragh
 INTERROGATING DEFICIT VIEWS: STUDENTS AND TEACHERS OF MATHEMATICS IN REFORM CONTEXTS

• Hridaykant Dewan
 CULTURE AND LANGUAGE IN THE PRACTICE OF MATHEMATICS TEACHING IN INDIA

• Rossi Dsouza
 THE SOCIAL MODEL OF DISABILITY AND CRITICAL MATHEMATICS EDUCATION

• Sonia Felix
 UNDERSTANDING LEARNING OF MATHEMATICS TEACHERS THROUGH POSITIONING THEORY: INTERPLAY OF COLLABORATION AND TRUST
• Karen Francois
VALUES AND BEAUTY IN MATH EDUCATION

• Pratap Ganesan, Poovizhi Patchaiyappan, Arun Iyyananrappan, Logeswari Saminathan, Naveen Kumar, Ranjith Perumal, Sanjeev Ranganathan, Saranya Bharathi and Sundranandhan Kothandaraman
SCIENCE TECHNOLOGY ENGINEERING MATHEMATICS (STEM) LAND: FACTORS AND INTERVENTIONS INFLUENCING CHILDREN'S ATTITUDE TOWARDS MATHEMATICS

• Nidhi Goel
SHAPING MATHEMATICS CLASSROOM THROUGH FUNDS OF KNOWLEDGE

• Peter Gøtze
HOW DO STUDENTS MAKE USE OF THEIR MATHEMATICAL KNOWING WHEN THEY READ THE WORLD?

• Brian Greer
STEM AND THE RACE BETWEEN EDUCATION AND CATASTROPHE

• Helena Grundén
TENSIONS BETWEEN REPRESENTATIONS AND ASSUMPTIONS IN MATHEMATICS TEACHING

• Jose Gutierrez and Mallika Scott
PROBLEMATIZING “THINKING” IN MATH EDUCATION

• Frances Harper
USING GRAPHIC ELICITATION METHODS TO TALK ABOUT SOCIAL IDENTITIES AND MATHEMATICS

• KjellrunHiis Hauge
APPROACHING FAKE NEWS IN MATHEMATICS EDUCATION

• Younkyung Hong and Susan Staats
COLLECTIVE CONSTRUCTION OF HETEROGLOSSIA IN A KOREAN PRIMARY SCHOOL GEOMETRY LESSON

• Robyn Jorgensen and Tom Lowrie
HOW MATHEMATICAL HABITUS SHAPES SPATIAL REASONING RESPONSES

• David Kollosche
INCLUSIVE MATHEMATICS EDUCATION IN THE GERMAN-SPEAKING COMMUNITY: THE POLITICS OF THE EMERGENCE OF A RESEARCH FIELD

• Ruchi S. Kumar
CORE AND PERIPHERAL PRACTICES AND BELIEFS OF TEACHERS IN THE CONTEXT OF CURRICULUM REFORM

- **Troels Lange and Tamsin Meaney**
 Discussing Mathematics Teacher Education for Language Diversity

- **Nicole Louie and Aditya Adiredja**
 An Ecological Perspective on the Reproduction of Deficit Discourses in Mathematics Education

- **Laxman Luitel**
 Nature of Mathematics and Pedagogical Practices

- **Saumya Malviya**
 Symbol as Metonymy and Metaphor: A Sociological Perspective on Mathematical Symbolism

- **A Mani**
 Mathematics of Excluded Women - A Personal Narrative

- **The MathEdCollective**
 The Math Ed Collective: Collaborative Action in an Era of Cyberbullying and Hate

- **Raquel Milani**
 Opening an Exercise: Mathematics Prospective Teachers Entering in Landscapes of Investigation

- **Alex Montecino**
 The Constant Competition, a Way of Governing the Mathematics Teacher

- **Vanessa Franco Neto, Paola Valero and Angela Guida**
 Anthropomorphism as a Pedagogical Device in Mathematics Textbooks for Rural Brazil

- **Anjali Noronha and Nidesh Soni**
 Making Sense of Percentages and It’s Importance in Unpacking Inequality and Discrimination

- **Alexandre Pais**
 Capitalism, Mathematics and Biosocial Research

- **Ram Krishna Panthi**
 Factors Responsible for Socially Just Pedagogy in Mathematics Education

- **Julio Cesar Paro and João Ricardo Viola Dos Santos**
AN ACTIVITY BASED ON AN EVERYDAY LIFE CATEGORY AND THE MOVEMENTS IN A MATHEMATICS TEACHERS WORKING GROUP

• **Tara Paudel**
GENDER ISSUE IN TEACHING AND LEARNING MATHEMATICS

• **Paulo, João Pedro Antunes and Viola dos Santos, João Ricardo**
PLANET OF THE APES AND MATHEMATICS EDUCATION (OR FICTION AS THEORIZATION MOVEMENT IN MATHEMATICS EDUCATION)

• **Priscila Pereira**
EXAMINING DISCOURSES OF RACE, GENDER AND CLASS ON MATHEMATICS TEXT: A CASE OF THE BRAZILIAN NATIONAL EXAM OF SECONDARY EDUCATION – ENEM

• **Dionysia Pitsili-Chatzi**
MATHEMATICS FOR ALL (RESPONSIBLE) STUDENTS: A DISCOURSE ANALYSIS OF THE ONTARIO CURRICULUM

• **Jaya Bishnu Pradhan**
SYMBIOSIS BETWEEN MATHEMATICS AND CULTURAL GAME: A NEPALESE EXPERIENCE

• **R. Ramanujam**
MATHEMATICS FOR THE ADULT DAILY-WAGE EARNER, REVISITED

• **Helena Roos**
CHALLENGES AT THE BORDER OF NORMALITY: STUDENTS IN SPECIAL EDUCATIONAL NEEDS IN AN INCLUSIVE MATHEMATICS CLASSROOM

• **Kate Le Roux**
AN AFRICA-CENTRED KNOWLEDGES APPROACH TO THEORY USE IN RESEARCH ABOUT MATHEMATICS EDUCATION AND SOCIETY

• **Laurie Rubel**
AN AMERICAN GAZE AT EQUITY IN MATHEMATICS EDUCATION: WOMEN ARAB CITIZENS OF ISRAEL

• **Johanna Ruge, Jana Peters and Reinhard Hochmuth**
A REINTERPRETATION OF OBSTACLES TO TEACHING

• **Shipra Sachdeva and Per-Odd Eggen**
STUDENTS’ CRITICAL PERCEPTIONS ABOUT MATHEMATICS EDUCATION

• **Ishan Santra and Swapna Mukhopadhyay**
THE ROLE MATHEMATICAL THINKING PLAYS IN MASONS' WORKPLACE IN WEST BENGAL: A PRELIMINARY EXAMINATION

• **James Sheldon**
MATHEMATICS TEACHER IDENTITY, TEACHER IDENTITY, AND INTERSECTIONAL IDENTITIES: AN OVERVIEW AND RECOMMENDATIONS FOR FURTHER RESEARCH

- Susan Staats
 RE-MYTHOLOGIZING MATHEMATICS? LESSONS FROM A SACRED TEXT

- Charoula Stathopoulou, Peter Appelbaum and Panagiota Kotarinou
 ARCHIMEDES COMES TO SCHOOL: A SELF-INITIATED CURRICULUM PROJECT AROUND BIG IDEAS

- Lisa Steffensen and Toril Eskeland Rangnes
 CONTROVERSIES OF CLIMATE CHANGE IN THE MATHEMATICS CLASSROOM

- Lovisa Sumpter, Milena Tsvetkova and David Sumpter
 UNDERSTANDING SEGREGATION: UPPER SECONDARY SCHOOL STUDENTS’ WORK WITH THE SCHELLING MODEL

- Venkateswaran T V
 SOCIAL ASPECTS OF SHIFTING STANDARDS OF VĀKYA ALMANAC COMPUTATIONS

- Paola Valero, Marcio Silva and Deise Souza
 THE CURRICULAR-TOY, MATHEMATICS AND THE PRODUCTION OF GENDERED SUBJECTIVITIES

- Paola Valero, Eva Norén, Marcio Silva and Vanessa Neto
 THE MATHEMATICALLY COMPETENT CITIZEN IN BRAZILIAN AND SWEDISH MATHEMATICS CURRICULUM AND TEXTBOOKS

- Andreas Vohns
 BILDUNG, PROFESSIONALIZATION AND COMPETENCIES: CLASHING NARRATIVES IN GERMAN MATHEMATICS TEACHER EDUCATION RESEARCH AND PRACTICE

- Anna Wallin, Eva Norén and Paola Valero
 TENSIONS IN THE SWEDISH FRITIDSHEM MATHEMATICS CURRICULUM: A POLICY ENACTMENT PERSPECTIVE

POSTERS

- Anchal Arora
 EXPLORING THE IDENTITIES LEARNERS ARE DEVELOPING: A CASE OF ELEMENTARY MATHEMATICS CLASSROOM

- Younkyung Hong, Susan Staats
 CHRONOTOPE AS AN ANALYTICAL TOOL: A TEACHER’S DILEMMA MANAGEMENT IN A MATHEMATICS CLASSROOM
• Arun Iyyanarappan, Bala Anandh, Logeshwari Saminathan, Poovizhi Pachaiyappan, Saranya Bharathi, Ranjith Perumal, Prathap Ganesan, Sanjeev Ranganathan, Sundaranandhan Kothandaraman and Naveen Kumar
SCIENCE TECHNOLOGY ENGINEERING MATHEMATICS (STEM) LAND: DEEP LEARNING OF MATHEMATICAL CONCEPTS THROUGH MATERIALS AND EBD CHALLENGES

• Kumar Gandharv Mishra
THE ART OF SELLING MATHEMATICS

• João Pedro Antunes Paulo
THE ACADEMY, THE WORLD OUT THERE AND THE SHARING OF THIS DIFFERENCE

• Akash Kumar Saini
TEACHING MATHEMATICS THEMATICALLY THROUGH SIGNIFICANT CULTURAL CONTEXTS

• Jyoti Sethi and Anita Rampal
TEACHING MATHEMATICS FOR SOCIAL JUSTICE: A DIALOGIC REFLECTION

• Robin Sharma and Saif Ali
MATHEMATICS AND SUSTAINABLE DEVELOPMENT GOALS: AN EXAMPLE OF DIGITAL GAMES BASED LEARNING

• Bruce Taplin
KARETAO PĀNGARAU: USING PUPPETRY TO ENCOURAGE COMMUNICATING MATHEMATICALLY
INCLUSIVE MATHEMATICS EDUCATION IN THE GERMAN-SPEAKING COMMUNITY: THE POLITICS OF THE EMERGENCE OF A RESEARCH FIELD

David Kollosche
Pädagogische Hochschule Vorarlberg, Austria

Abstract: In the German-speaking countries, the number of publications on inclusive mathematics education has increased severely since the ratification of the UN Convention on the Rights of Persons with Disabilities in 2009. This study is based on a literature survey and reports that inclusive mathematics education is focussing one-sidedly on open learning environments, while special needs of students are seldom taken into consideration. It also addresses the uncritical dogmatisation of inclusion and tolerance of stigmatisation through mathematics education. Eventually, the emergence of inclusive mathematics education as a research field is discussed from a systemic perspective.

INTRODUCTION

Traditionally, Germany, Austria and Switzerland do not only have highly segregating school systems, usually allocating students to three different tracks of normal schools after the fourth year of schooling, they also operate professionalised networks of special-needs schools for the exclusive education of students with special needs. These schools are usually organised around one or several special needs foci. Germany distinguishes between the foci learning impairment, mental development, emotional and social development, language development, physical and motoric development, hearing impairment, visual impairment, and illnesses. With the ratification of the United Nations Convention on the Rights of Persons with Disabilities in 2009, Germany, and in similar processes also Austria and Switzerland, committed themselves to the provision of an inclusive school system. Thereby, research and educational policy tend to use a wide understanding of inclusion:

[I]t is imperative to consider the different dimensions of diversity. That includes disability in the sense of the Convention on the Rights of Persons with Disabilities as well as special starting conditions such as language, social background, cultural and religious orientation, gender and special giftedness and talents. (KMK, 2015, p. 1, my translation)
In the course of the development which started in 2009, mathematics education has seen the establishment of inclusive mathematics education as a field of scholarly inquiry in the German-speaking community. This development will be the object of this study.

This study can first of all be understood as an attempt in ‘researching research’ (Pais & Valero, 2012). Just as mathematics education originated from an integration of mathematical, pedagogical and psychological theories and was limited to such theoretical perspectives until connections for further disciplines were established (Kilpatrick, 1992), every emerging field runs the risk that the theories originally underlying it ‘comprise particular choices in terms of analytic filters that we apply, governed by underlying ideological motivations and trends of which we are not always aware’ (Brown, 2008, p. 249). Consequently, research should always be considered a political act which can and should be questioned critically, not only in the micro-cosmos of specific studies or theories, but as a whole. In this vein, this study can be understood as an opportunity to pause and look back on the work that has been done, on its conditions, assumptions, emphases and results, in order to gain orientation for the future. At the same time, the development of inclusive mathematics education in the German-speaking community can be studied as an example of an emerging field within mathematics education. Thereby, I am fully aware that most readers will not be familiar with German traditions in mathematics education. That is why the following analysis will not engage in intra-German discussions but present very general observations which might – to some extend – also apply to other countries and other developments of fields of academic study.

The core of this study is a literature survey with a multi-dimensional categorisation to represent the publications in the field of inclusive mathematics education in German-speaking countries in an assessable form. On that basis, the strengths and weaknesses of the contemporary field will be discussed, especially its over-emphasis of open learning environments and its uncritical stance towards inclusion and stigmatisation. In the end, the discussion returns to the politics of the emergence of the field.

LITERATURE SURVEY

Providing an objective overview of the literature in the field proved to be demanding as it required intensive decision-making as to which publications to consider and which not to consider. As I wanted to make sure that all contributions were published under the influence of the UN convention, I started my literature survey in the year 2011, and had it end in 2017, the last completed year before the preparation of this study. In order to delimit the field, I restricted the study to German publications only, even though a few Germanophone authors also or predominantly published in English. I searched library and research databases as well as Google Scholar for monographs (including doctoral disserations), book chapters and journal articles including the keywords ‘inclusion’ and ‘inclusive’ in relation to ‘mathematics’ in the titles (using the German expressions), and went through all results for references to further publications on inclusive mathematics education. All publications found were analysed for the school
type in focus (primary or secondary), for the style of publication (research, overviews, best practice, and case reports), and for the focus of the contribution. Every sixth contribution focusses on ‘mathematical giftedness’. However, as this focus has a more than 30-year-old tradition in Germany which initially had little to do with inclusive education, and as it is nearly impossible to determine where inclusive mathematics education begins in this branch, I decided to exclude this focus from the following analysis. Another nearly 7% of all the publications found focus on diagnostics. As these contributions do not present specific diagnostic tools for students with special needs but discuss the application of general tools in inclusive settings, it was likewise hard to demarcate that line of research from general diagnostics, leading me to exclude this focus as well. Finally, I excluded another 5% of all findings as they focus on dyscalculia, a field also much older than the idea of inclusive mathematics education and difficult to distinguish from it. The remaining foci are listed in Table 1 below.

<table>
<thead>
<tr>
<th>Focus</th>
<th>Re</th>
<th>Ov</th>
<th>BP</th>
<th>CR</th>
<th>abs.</th>
<th>rel.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open learning environments</td>
<td>10</td>
<td>7</td>
<td>38</td>
<td>-</td>
<td>55</td>
<td>49%</td>
</tr>
<tr>
<td>Teacher education for inclusion</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>15</td>
<td>13%</td>
</tr>
<tr>
<td>Migration</td>
<td>8</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>9%</td>
</tr>
<tr>
<td>Language diversity (w/o migration)</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td>11</td>
<td>10%</td>
</tr>
<tr>
<td>Emotional and social development</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>Visual impairment</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>4</td>
<td>4%</td>
</tr>
<tr>
<td>Hearing impairment</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>Learning impairment</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>Mental development</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>Physical and motoric development</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>Other or several foci</td>
<td>-</td>
<td>5</td>
<td>2</td>
<td>8</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td>In total</td>
<td>33</td>
<td>22</td>
<td>50</td>
<td>6</td>
<td>111</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 1: Numbers of occurrences of German publications on inclusive mathematics education in 2011–2017, classified by inclusive focus and by style of publication. (Re – research, Ov – overviews, BP – best practice, CR – case reports)

ONE-SIDED RESEARCH FOCUS

It is striking that 49% of the publications focus on open learning environments. These are collections of problems that touch a common mathematical content and allow for multiple solutions paths and problem-solving. Open learning environments
include different levels of difficulties in a natural way, so that it is possible to work on different levels. Learners have options to choose, for example, the ways of solution, the materials, the tasks and the representations. (Scherer & Hähn, 2017, p. 25, my translation)

Indeed, there is an evidence-based consensus that heterogeneous learning groups profit from the possibility of in-class differentiation (e.g., Scherer, 1995). However, an interview study with teachers on the possibility of inclusion of mathematics education revealed that many teachers consider it impossible to teach mathematics inclusively or feel badly prepared for that task (Korff, 2015). Teacher students have been shown to express similar concerns, although their confidence in managing inclusive mathematics education can be raised significantly by appropriate coursework (Korff, 2016). Thereby, teachers and researchers alike are well aware that the inclusion of students with special needs might have them end up with special tasks which are fundamentally different from the task of the regular group, leading to a ‘microexclusion’ in spite of an achieved ‘macroinclusion’ (Faustino, Queiroz Moura, Gomes da Silva, Muzinatti, & Skovsmose, 2017). Therefore, the provision of a variety of open learning environments for the use in inclusive mathematics education is an important product of the research community.

Nonetheless, the documented focus on open learning environment also constitutes a fundamental problem. It runs danger of becoming the dominant form in which inclusive mathematics education is thought. Why else would an author refer to open learning environments and then claim that ‘inclusion in mathematics education can be made possible with easy means’ (Grohmann, 2014, p. 51, my translation)? Inclusion through open learning environments uncritically assumes that inclusion is more or less achieved by allowing various speeds of learning. For example, Andrea Peter-Koop’s (2016) proposal that open learning environments should not only allow work on a ‘basis level’ but should include two degrees of ‘support levels’ and two degrees of ‘expansion levels’, each with appropriate tasks and material, documents a tendency to think inclusion one-dimensionally along the ease and speed of learning processes. Admittedly, 70% of the students with diagnosed special needs have been labelled the foci learning impairment, mental development, or emotional and social development (numbers from 2014, Klemm, 2015), and in those cases, it is usually assumed that the intellectual development in mathematics equals that of regular students, albeit delayed (cf. Moser Opitz, 2016). Yet, such a perspective on inclusion does not ask for the specific conditions of learners with special needs, who indeed might experience and approach mathematics very differently. Focussed research on the special needs of students with special needs foci in mathematics education add up to only 11% of the publications on inclusive mathematics education and provide hardly any answers for students with specific special needs. As a consequence, the contents of inclusive mathematics education and the order in which those contents are discussed stay those
which were chosen for the idealised regular students, eventually merely adapted for the in-coming diversity. To my knowledge, only Klaus Rödler’s (2016) approach constitutes an exception in proposing to begin elementary instruction with the introduction of multiplication as a concept that is new and challenging for nearly every student.

For the analysis of the emergence of the field of inclusive mathematics education, it is essential to ask for the reasons of the one-sided dominance of open learning environments in the field. In the Germanophone mathematics education community, open learning environments have a more than 40-year-old research tradition (Häsel-Weide, 2015). The concept is well known among teachers, although not widely established in school. Traditionally, this branch of research advocated the use of open learning environments for all students and had no special focus on inclusion. Still today, some authors legitimise the use of open learning environments ‘for all students’ in inclusive settings by positive effects of learning outcomes rather than by the wish for inclusive education (e.g., Scherer & Hähn, 2017, p. 25). The mechanisms behind that branch of research can be understood as part of what Sverker Lundin (2012) calls the ‘standard critique of mathematics education’ (p. 74) in the sense that school practice is constantly criticised, provoking more research, in our case on open learning environments, but eventually remains more or less the same. Formulated polemically, inclusive mathematics education provided an opportunity for scholars to cast their old ideas on open learning environments into new publications, to attract external funds, and to impose their ideas on school with renewed authority. Tellingly, this focus of inclusive mathematics education has the lowest rate of research output with less than a fifth of all publications presenting new insights. The vast majority of contributions on learning environments are best practice reports, proposing that academia already knows enough and only needs to communicate its insights. Even though open learning environments have a lot to offer, they require further research, and still they cannot be the only answer to inclusion.

INCLUSION AS A DOGMA

In the German publications, political directives in favour of inclusion and romantic ideals of all children learning together happily are regularly held as warrant enough to justify inclusive mathematics education and discard any critical considerations or alternative forms of dealing with heterogeneity. Under the 111 publications that lay the basis for this analysis, not one sets out to critically discuss the idea of inclusive mathematics education. Thereby, already the idea of inclusion through open learning environment provokes a wide range of critical questions: In how far is it generally possible to design a logically-structured course in mathematics in the form of open learning environments? In how far is it even possible to address similar contents at highly differentiated levels without essentially altering the contents?
In contrast to the dogmatism with which inclusion is met in mathematics education research, German inclusive pedagogy has witnessed intensives debates concerning the chances and dangers of inclusion. For example, Bernd Ahrbeck (2014) argues that the discussion on inclusion in school is too emotional and normative and not sufficiently based on empirical evidence. Regarding the teaching of students with various special needs by unspecialised teachers in inclusive settings instead of the teaching of students with one special need focus by specialised teachers, Ahrbeck warns: “Special needs education is in danger of lowering its standards, for which a high price will have to be paid, first and foremost by the affected children themselves” (p. 9, my translation). And concerning open learning environments, Jürgen Budde (2015) explains that meeting every learner’s individual needs will eventually stand in conflict to mutual work on the same topic. In mathematics education, the central question would not only be in how far inclusion is possible and desirable, but, above all, on the basis of which normative orientation such a question could find an answer in the first place. Eventually, the question of inclusion in mathematics is a (not yet) well-informed political decision, which mathematics educators should not leave to politicians and follow all too willingly but co-organise more actively and critically.

STIGMATISATION THROUGH INCLUSIVE MATHEMATICS EDUCATION

School, and mathematics education in particular, has the social function of assessing students for later selection and allocation (Kollosche, 2018). If students with special needs do not get marked, they will have to be labelled as ‘different’ in order to be comparable to other applicants to the job market. Thereby, the definition of the labels and the rights connected to each of them are necessarily arbitrary. For example, the special needs focus in Germany is granted if a learner’s IQ scores below 70; with only 1 more point on the IQ score, the same child might be labelled as ‘normal’. As different diagnostic methods are applied in the 16 federal states of Germany, the proportion of students with diagnosed special needs varies from as low as 5.4% in one state up to 10.8% in another (Klemm, 2015). To some extent, it is coincidental whether a struggling student is diagnosed a learning impairment or labelled as intellectually impaired. Equally fluent differences are established when deciding where other special needs foci such as hearing impairment begin. However, the consequences for affected students can be severe. They are henceforth branded as handicapped, a stigma that has been shown to have negative effects on self-efficacy, achievement and self-confidence. Admittedly, they may also receive individualised support to ease their learning of mathematics. But if these benefits outweigh the effects of stigmatisation is hard to say and subject to intensive discussions on inclusive education research (e.g., Arishi, Boyle, & Lauchlan, 2017). In any case, voices from inclusive pedagogy are already demanding a decategorisation and positioning themselves against an industry that relies on a market of students who require special care (Frances, 2013).
Statistical data from Germany reveals that the proportion of students in exclusive education at special needs schools has remained almost constant from 2010 to 2014, while the proportion of students in inclusive education has increased from 1.2% of the student population in 2010 to 2.1% in 2014 (Klemm, 2015). While some scholars celebrate this increase of inclusively educated students from 19% of all students with special needs in 2010 to 31% in 2014, others are astonished by the sudden increase of the proportion of students with special needs. Often, the policy of inclusive education does not mean that less students are education in exclusion at special needs schools, but that more students are diagnosed with special needs. In fact, it may be argued that inclusive education in Germany has yet failed to considerably improve the situation of learners who are still educated in an exclusive system; instead, it has produced additional thousands of learners who will be stigmatised as problems for the education system, receive specialised assessment and equate to more funding or personal support for their teachers.

While mathematics education obviously does play a role in that stigmatisation business, and possibly a central one, given the close neighbourhood to general intelligence which is often attributed to mathematics, German publications on inclusive mathematics education do not address the problem at all. With their one-sided focus on open learning environments and the concomitant ignorance of the challenges of specific special needs in inclusive mathematics education, researchers in mathematics education have played their part in keeping the traditionally excluded students out of inclusive school. At the same time, they have profited from an increased demand for inclusion in regular schools which was produced by the intensified labelling of students. Without a critical position concerning the increase of the number of students who are diagnosed to have special needs, mathematics education is willingly taken part in a development that might not lie in the interest of students and teachers. For example, the literature survey showed that diagnostic tools, which were designed for regular students, are uncritically applied to students with special needs. If such tools are able to inform teachers about the special condition of a learner or rather document the student’s deviation from the norm and legitimise stigmatisation, is a delicate question. To take another example, it is established that managing open learning environments requires socio-linguistic and meta-cognitive abilities that are unequally distributed among learners (Kirschner, Sweller, & Clark, 2006; Theule Lubienski, 2000). So, while open learning environments might be a pragmatic solution allowing a large variety of students to learn on a shared topic, it might simultaneously establish new and less visible forms of exclusion along other axes of differences.

In socio-political studies, mathematics education has generally been shown to disadvantage students along ethnicity, gender, migration background, and social class (Jurdak, Vithal, Freitas, Gates, & Kollosche, 2016), thus establishing new lines of
exclusion. What is more, processes of stigmatisation as ‘unfit for understanding mathematics’, which create forms of exclusion which are predominantly based in the mathematics classroom, have been identified in empirical studies (Kollosche, 2017; Lange, 2009). All in all, it is fair to say that mathematics education leads to discrimination and exclusion, and it is at least surprising that such processes are not discussed in publications on inclusive mathematics education. An exception to the general phenomenon of stigmatisation through mathematics education is the research on dyscalculia which has recently expressed awareness for the fact that problems with basic arithmetic is not a medical issue but a case of failed teaching (Gaidoschik, 2010; Meyerhöfer, 2011).

CONCLUSION

In terms of inclusive mathematics education in the German-speaking countries, it has been shown that the discourse relies heavily on open learning environments, whose potentials are not yet fully understood, but without any doubt limited. This reliance threatens to mask more substantial questions, especially how mathematics and mathematics education can interact with students with specific special needs. Also, the German field will have to face critical questions concerning the potentials and limitations of inclusion in general as well as concerning the role that mathematics education plays in stigmatisation processes.

Returning to the political analysis of the emergence of the field of inclusive mathematics education in the German-speaking countries, it can be argued that the increased political focus on inclusion, which is also expressed by a considerable funding, has not yet led the academic basis to provide insights that allow for a wide inclusion. Instead, it has supported a specific group of colleagues, particularly those from primary school education who had already worked with open learning environments and could quickly – presumably more quickly than colleagues embarking on less prepared tracks – present first ideas and intervention programs. While the contributions on inclusive learning environments are an important piece in the puzzle, this development might have led to a situation in which many scholars are resting on their success rather than promoting critical questions and developing new lines of research. This situation might change drastically if policy makers, alarmed by the stagnation of inclusion rates, decide to take a more critical stance themselves and fund research on inclusive mathematics education more purposefully.

REFERENCES

KMK. (2015). *Lehrerbildung für eine Schule der Vielfalt* [Teacher education for a school of diversity].

