Proceedings of the Seventh Congress of the European Society for Research in Mathematics Education

Editors

Marta Pytlak, Tim Rowland, Ewa Swoboda

University of Rzeszów, Poland
Editors
Marta Pytlak, University of Rzeszów, Poland
Tim Rowland, University of Cambridge, UK
Ewa Swoboda, University of Rzeszów, Poland

Editorial Board

The proceedings are published by University of Rzeszów, Poland on behalf of the European Society for Research in Mathematics

© Copyright 2011 left to the authors
TABLE OF CONTENTS

General Introduction
Ferdinando Arzarello, Tim Rowland

1

Editorial Introduction
Tim Rowland, Ewa Swoboda, Marta Pytlak

5

PLENARY LECTURES

Plenary lecture 1

Research into Pre-service elementary teacher education courses
Anna Sierpińska

9

Plenary lecture 2

The structure and dynamics of affect in mathematical thinking and learning
Markku S. Hanula

34

Plenary lecture 3

Proving and proof as an educational task
Maria Alessandra Mariotti

61

RESEARCH PAPERS

WORKING GROUP 1

Introduction to the papers of WG 1: Argumentation and proof
Viviane Durand-Guerrier, Kirsti Hemmi, Niels Jahnke, Bettina Pedemonte

93

Meta-cognitive unity in indirect proofs
Ferdinando Arzarello, Cristina Sabena

99

Abduction in generating conjectures in dynamic geometry through maintaining dragging
Anna Baccaglini-Frank

110

Argumentation and proof: discussing a “successful” classroom discussion
Paolo Boero

120

Mathematical proving on secondary school level I: supporting student understanding through different types of proof. A video analysis
Esther Brunner, Kurt Reusser, Christine Pauli

131

Everyday argumentation and knowledge construction in mathematical tasks
Julia Cramer

141

Analyzing the proving activity of a group of three students
Patricia Perry, Óscar Molina, Leonor Camargo, Carmen Samper

151

On the role of looking back at proving processes in school mathematics: focusing on argumentation
Yosuke Tsujiyama

161
Making the discovery function of proof visible for upper secondary school students
Kirsti Hemmi, Clas Løfwall

Conjecturing and proving in AlNuset
Bettina Pedemonte

A schema to analyse students' Proof evaluations
Kirsten Pfeiffer

The appearance of algorithms in curricula a new opportunity to deal with proof?
Modeste Simon, Ouvrier-Buffet Cécile

Proof: a game for pedants?
Joanna Mamona-Downs, Martin Downs

Two beautiful proofs of Pick’s theorem
Manya Raman, Lars-Daniel Öhman

Multimodal derivation and proof in algebra
Reinert A. Rinvold, Andreas Lorange

The view of mathematics and argumentation
Antti Viholainen

Upper secondary school teachers’ views of proof and the relevance of proof in teaching mathematics
Emelie Reuterswärd, Kirsti Hemmi

Development of beginning skills in proving and proof-writing by elementary school students
Stéphane Cyr

Designing interconnecting problems that support development of concepts and reasoning
Margo Kondratieva

WORKING GROUP 2

Introduction to the Papers of WG 2: Teaching and learning of number system and arithmetics
Susanne Prediger, Naďa Stehlikova, Joke Torbeyns, Marja van den Heuvel-Panhuizen

Cognitive styles and their relation to number sense and algebraic reasoning
Marilena Chrysostomou, Chara Tsingi, Eleni Cleanthous

Danish number names and number concepts
Lisser Rye Ejersbo, Morten Mistfeld

Strategies and procedures: what relationship with the development of number sense of students?
Elvira Ferreira, Lurdes Serrazina

Preschool children’s understanding of equality: opting for a narrow or a broad interpretation?
Anatoli Kouropatov, Dina Tirosh

Using the double number line to model multiplication
Dietmar Küchemann, Margaret Brown, Jeremy Hodgen
Proportion in mathematics textbooks in upper secondary school
Anna Lundberg

Teaching arithmetic for the needs of the society
Hartwig Meissner

Analysing children’s learning in arithmetic through collaborative group work
Carol Murphy

A theoretical model for understanding fractions at elementary school
Aristkolis Nikoladou, Demetra Pitta-Pantazi

Between algebra and geometry: the dual nature of the number line
Ildikô Pelczer, Cristian Voica, Florence Mihaela Singer

Special education students’ ability in solving subtraction problems up to 100 by addition
Marjolijn Peltenburg, Marja van den Heuvel Panhuizen

Mental calculation strategies for addition and subtraction in the set of rational numbers
Sebastian Rezat

WORKING GROUP 3

Introduction to the papers of WG 3: Algebraic thinking
Maria C. Cañadas, Thérèse Dooley, Jeremy Hodgen, Reinhard Oldenburg

Can they “see” the equality?
Vassiliki Alexandrou-Leonidou and George N. Philippou

Patterning problems: sixth graders’ ability to generalize
Ana Barbosa

The role of technology in developing principles of symbolical algebra
Giampaolo Chiappini

Secondary school students’ perception of best help generalising strategies
Boon Liang Chua, Celia

Using epistemic actions to trace the development of algebraic reasoning in a primary classroom
Thérèse Dooley

Graphical representation and generalization in sequences problems
Maria C. Cañadas, Encarnación Castro, Enrique Castro

The entrance to algebraic discourse:
informal meta-arithmetic as the first step toward formal school algebra
Shai Caspi, Anna Sfard

Students’ reasoning in quadratic equations with one unknown
M. Gözde Didiş, Sinem Baş, A. Kürrat Erbaş

Investigating the influence of student’s previous knowledge on their concept of variables - an analysis tool considering teaching reality
Sandra Gerhard

What is algebraic activity? Consideration of 9-10 year olds learning to solve linear equations
Dave Hewitt
The role of discursive artefacts in making the structure of an algebraic expression emerge 511
Laura Maffei, Maria Alessandra Mariotti

Algebraic thinking of grade 8 students in solving word problems with a spreadsheet 521
Sandra Nobre, Nélia Amado, Susana Carreira, João Pedro da Ponte

Algebraic reasonings among primary school 4th grade pupils 532
Marta Pytlak

WORKING GROUP 4

Introduction to the papers of WG 4: Geometry teaching and learning 542
Philippe Richard, Athanasios Gagatsis, Sava Grozdev

Innovative early teaching of isometries 547
Carlo Marchini, Paola Vighi

Static and dynamic approach to forming: the concept of rotation 558
Edyta Jagoda, Ewa Swoboda

Elementary students’ transformational geometry abilities and cognitive style 568
Xenia Xistouri, Demetra Pitta-Pantazi

Geometrical transformations as viewed by prospective teachers 578
Xhevdet Thaqi, Joaquin Giménez, Nuria Rosich

Preservice teachers and the learning of geometry 588
Lina Fonseca, Elisabete Cunha

Towards a comprehensive theoretical model of students’ geometrical figure understanding and its relation with proof 598
Eleni Deliyianni, Athanasios Gagatsis, Annita Monoyiou, Paraskevi Michael, Panayiota Kalogirou, Alain Kuzniak

Secondary Students behavior in proof tasks: understanding and the influence of the geometrical figure 608
Athanasios Gagatsis, Paraskevi Michael, Eleni Deliyianni, Annita Monoyiou, Alain Kuzniak

Relations between geometrical paradigms and van Hiele levels 618
Annette Braconne-Michoux

Geometry as propaedeutic to model building – a reflection on secondary school teachers’ beliefs 628
Boris Girnat

Geometric work at the end of compulsory education 638
Alain Kuzniak

Language in the geometry classroom 649
Caroline Bulf, Anne-Cécile Mathé, Joris Mithalal

Proofs and refutations in lower secondary school geometry 660
Taro Fujita, Keith Jones, Susumu Kunimune, Hiroyuki Kumakura, Shinichiro Matsumoto
Identifying the structure of regular and semiregular solids –
a comparative study between different forms of representation

Jürgen Steinwandel and Matthias Ludwig

Generating shapes in a dynamic environment

Sue Forsythe

Integrating number, algebra, and geometry with interactive geometry software

Kate Mackrell

WORKING GROUP 5

Introduction to the papers of WG 5: Stochastic thinking

Dave Pratt

Designing pedagogic opportunities for statistical thinking within inquiry based science

Janet Ainley, Tina Jarvis and Frankie McKeon

Preservice primary school teachers’ intuitive use of representations in uncertain situations

Chiara Andrà

Relating graph semiotic complexity to graph comprehension in statistical graphs
produced by prospective teachers

Pedro Arteaga, Carmen Batanero

The challenges of teaching statistics in secondary vocational education

Arthur Bakker, Monica Wijer, Sanne Akkerman

Children’s emergent inferential reasoning about samples in an inquiry-based environment

Dani Ben-Zvi, Katie Makar, Arthur Bakker, Keren Aridor

Investigating relative likelihood comparisons of multinomial, contextual sequences

Egan J Chernoff

Prospective teachers’ common and specialized knowledge in a probability task

J. Miguel Contreras, Carmen Batanero, Carmen Diaz, José A. Fernandes

Investigating secondary teachers’ statistical understandings

Helen M. Doerr, Bridgette Jacob

Mental models of basic statistical concepts

Andreas Eichler, Markus Vogel

Instructional representations in the teaching of statistical graphs

Maria Teresa González Astudillo, Jesus Enrique Pinto Sosa

Assessing difficulties of conditional probability problems

M. Pedro Huerta, Fernando Cerdán, Mª Ángeles Lonjedo, Patricia Edo

Using a rasc partial credit model to analyze the responses of Brazilian
undergraduate students to a statistics questionnaire

Verónica Y. Kataoka, Claudia Borim da Silva, Claudette Vendramini, Irene Cazorla

Attitudes of teachers towards statistics: a preliminary study with Portuguese teachers

José Alexandre Martins, Maria Manuel Nascimento, Assumpta Estrada

Developing an online community of teaching practitioners: a case study

Maria Meletiou-Mavrotheris, Efi Paparistodemou
Risk taking and probabilistic thinking in preschoolers
Zoi Nikiforidou, Jenny Pange

Influential aspects in middle school students’ understanding of statistics variation
Antonio Orta, Ernesto Sánchez

Carrying out, modelling and simulating random experiments in the classroom
Michel Henry, Bernard Parzysz

Risk-based decision-making by mathematics and science teachers
Dave Pratt, Ralph Levinson, Phillip Ken, Cristina Yogui

Individual pathways in the development of students’ conceptions of patterns of chance
Susanne Predige, Susanne Schnell

The role of relevant knowledge and cognitive ability in gambler fallacy
Caterina Primi & Francesca Chiesi

Connecting experimental and theoretical perspectives
Theodosia Prodromou

Implementing a more coherent statistics curriculum
Anneke Verschut and Arthur Bakker

WORKING GROUP 6

Introduction to the papers of WG 6: Application and modelling
Gabriele Kaiser, Susana Carreira, Thomas Lingefjärd, Geoff Wake

Are integrated thinkers better able to intervene adaptively?
– a case study in a mathematical modelling environment
Rita Borromeo Ferri and Werner Blum

A modelling approach to developing an understanding of average rate of change
Helen M. Doerr and AnnMarie H. O’Neil

An investigation of mathematical modelling in the Swedish national course test47 in mathematics
Peter Frejd

Modelling problems and digital tools in German centralised examinations
Gilbert Greefrath

Analysis of the problem solving process and the use of representations while handling complex mathematical story problems in primary school
Johannes Groß, Katharina Hohn, Siebel Telli1 ,Renate Rasch, Wolfgang Schnotz

Application and the identity of mathematics
Kasper Bjering Soby Jensen

Students constructing modelling tasks to peers
Thomas Lingefjärd

Modelling as a big idea in mathematics with significance for classroom instruction
– how do pre-service teachers see it?
Hans-Stefan Siller, Sebastian Kuntze, Stephen Lerman, Christiane Vogl
Modelling in an integrated mathematics and science curriculum: bridging the divide

Geoff Wake

Exploring the solving process of groups solving realistic Fermi problem from the perspective of the anthropological theory of didactits

Jonas Bergman Årlebäck

Hypotheses and assumptions by modeling – a case study

Roxana Grigoras

WORKING GROUP 7

Introduction to the papers of WG 7: Mathematical potential, creativity and talent

Roza Leikin, Demetra Pitta-Pantazi, Florence Mihaela Singer, Andreas Ulovec

Integrating theories in the promotion of critical thinking in mathematics classrooms

Einav Aizikovitsh-Udi, Miriam Amit

High attaining versus (highly) gifted pupils in mathematics: a theoretical concept and an empirical Survey

Matthias Brandl

Does mathematical creativity differentiate mathematical ability?

Maria Kattou, Katerina Kontoyianni, Demetra Pitta-Pantazi, Constantinos Christou

Unraveling mathematical giftedness

Katerina Kontoyianni, Maria Kattou, Demetra Pitta-Pantazi, Constantinos Christou

Questioning assumptions that limit the learning of fractions: The story of two fifth graders

Andreas O. Kyriakides

Mathematical creativity of 8th and 10th grade students.

Roza Leikin, Yona Kloss

Employing multiple-solution-tasks for the development of mathematical creativity: two comparative studies

Roza Leikin, Anat Levav-Waynberg, Raisa Guberman

Mathematical creativity in elementary school: Is it individual or collective?

Esther Levenson

Developing creative mathematical activities: method transfer and hypotheses’ formulation

Bożena Maj

Didactical vs. mathematical modelling of the notion competence in mathematics education: case of 9-10-year old pupils’ problem solving

Bernard Sarrazy, Jarmila Novotná

Problem posing and modification as a criterion of mathematical creativity

Florence Mihaela Singer, Ildikó Pelczer, Cristian Voica

Creativity in three-dimensional geometry:

How can an interactive 3d-geometry software environment enhance it?

Paraskevi Sophocleous, Demetra Pitta-Pantazi

Mathematical challenging tasks in elementary grades

Isabel Vale, Teresa Pimentel
WORKING GROUP 8

Introduction to the papers of WG 8: Affect and mathematical thinking
Marilena Pantziara, Pietro Di Martino, Kjersti Wege, Wolfgang Schloeglmann

1165

Self – about using representations while solving geometrical problems
Areti Panaoura, Eleni Deliyianni, Athanasios Gagatsis and Iliada Elia

1167

A comparative study of Norwegian and English secondary students’ attitude towards mathematics
Birgit Pepin

1179

The pupils’ voice in creating a mathematically resilient community of learners
Clare Lee, Sue Johnston-Wilder

1189

"You understand him, yet you don't understand me?!" –
On learning mathematics as an interplay of mathematizing and identifying
Einat Heyd-Metzuyanim, Anna Sfard

1199

An intervention on students’ problem-solving beliefs
Gabriel Stylianides, Andreas Stylianides

1209

A reversal theory perspective on disaffection using two examples
Gareth Lewis

1219

Students’ dispositions to study further mathematics in higher education: the effect of students’ mathematics self-efficacy
Irene Kleanthous, Julian Williams

1229

An examination of the connections between self discrepancies’ and effort, enjoyment and grades in mathematics
Laura Tuohilampi

1239

The impact of context and culture on the construction of personal meaning
Maike Vollstedt

1249

The effect of a teacher education program on affect: the case of Teresa and PFCM
Maria Pezzia and Pietro Di Martino

1259

Fear of failure in mathematics. What are the sources?
Marilena Pantziara and George Philippou

1269

WORKING GROUP 9

Introduction to the papers of WG 9: Language and mathematics
Maria Luiza Cestari

1279

Infinite and unbounded sets: a pragmatic perspective
Cristina Bardelle

1282

Mathematical joint construction at elementary grade – a reconstruction of collaborative problem solving in dyads
Birgit Brandt, Gyde Höck

1292

The concept of equivalence in a socially constructed language in a primary school class
Cristina Coppola, Monica Mollo, Tiziana Pacelli

1302
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contention in mathematical discourse in small Groups in elementary school teaching</td>
<td>1313</td>
</tr>
<tr>
<td>Andrea Gellert</td>
<td></td>
</tr>
<tr>
<td>Turn-taking in the mathematics classroom</td>
<td>1325</td>
</tr>
<tr>
<td>Jenni Ingram, Mary Briggs and Peter Johnston-Wilder</td>
<td></td>
</tr>
<tr>
<td>Communicating experience of 3D space: Mathematical and Everyday Discourse</td>
<td>1335</td>
</tr>
<tr>
<td>Candia Morgan, Jehad Alshwaikh</td>
<td></td>
</tr>
<tr>
<td>A working model for Improving Mathematics teaching and learning for bilingual students</td>
<td>1346</td>
</tr>
<tr>
<td>Máire Ni Riordáin</td>
<td></td>
</tr>
<tr>
<td>Revoicing in processes of collective mathematical argumentation among students</td>
<td>1356</td>
</tr>
<tr>
<td>Núria Planas, Laura Morera</td>
<td></td>
</tr>
<tr>
<td>Epistemological and semiotic issues related to the concept of symmetry</td>
<td>1366</td>
</tr>
<tr>
<td>Frode Rønning</td>
<td></td>
</tr>
<tr>
<td>Language as a shaping identity tool: The case of in-service Greek teachers</td>
<td>1376</td>
</tr>
<tr>
<td>Konstantinos Tatsis</td>
<td></td>
</tr>
<tr>
<td>WORKING GROUP 10</td>
<td></td>
</tr>
<tr>
<td>Introduction to the papers of WG 10:</td>
<td>1386</td>
</tr>
<tr>
<td>Discussing diversity in mathematics education from social, cultural and political perspectives</td>
<td></td>
</tr>
<tr>
<td>Paola Valero, Sarah Crafter, Uwe Gellert, Núria Gorgorió</td>
<td></td>
</tr>
<tr>
<td>Agency in mathematics education</td>
<td>1389</td>
</tr>
<tr>
<td>Annica Andersson, Eva Norén</td>
<td></td>
</tr>
<tr>
<td>Interplays between context and students’ achievement of agency</td>
<td>1399</td>
</tr>
<tr>
<td>Annica Andersson</td>
<td></td>
</tr>
<tr>
<td>Climate change and mathematics education: making the invisible visible</td>
<td>1409</td>
</tr>
<tr>
<td>Richard Barwell, Christine Suurtamm</td>
<td></td>
</tr>
<tr>
<td>Teachers discussions about parental use of implicit and explicit mathematics in the home</td>
<td>1419</td>
</tr>
<tr>
<td>Sarah Crafe, Guida de Abreu</td>
<td></td>
</tr>
<tr>
<td>Students perceptions about the relevance of mathematics in an Ethiopian preparatory school</td>
<td>1430</td>
</tr>
<tr>
<td>Andualem Tamiru Gebremichael, Simon Goodchild and Olav Nygaard</td>
<td></td>
</tr>
<tr>
<td>Differential access to vertical discourse</td>
<td>1440</td>
</tr>
<tr>
<td>– Managing diversity in a secondary mathematics classroom</td>
<td></td>
</tr>
<tr>
<td>Uwe Gellert, Hauke Straehler-Pohl</td>
<td></td>
</tr>
<tr>
<td>Mathematics teachers’ social representations and identities made available to immigrant students</td>
<td>1450</td>
</tr>
<tr>
<td>Núria Gorgorió, Montserrat Prat</td>
<td></td>
</tr>
<tr>
<td>Social functions of school mathematics</td>
<td>1460</td>
</tr>
<tr>
<td>David Kollosche</td>
<td></td>
</tr>
<tr>
<td>Becoming disadvantaged: public discourse around national testing</td>
<td>1470</td>
</tr>
<tr>
<td>Troels Lange, Tamsin Meaney</td>
<td></td>
</tr>
</tbody>
</table>
Parent-child interactions on primary school-related mathematics
Richard Newton, Guida de Abreu

Socio-cultural roots of the attribution process in family mathematics education
Javier Diez-Palomar, Sandra Torras Ortin

Between school and company: a field of tension?
Toril Eskeland Rangnes

Ethnomathematics in European Context
Charoula Stathopoulou, Karen Françoï, Darlinda Moreira

Doctoral programs in mathematics education:
current status and future pathways for Turkey
Behiye Ubuz, Erdinç Çakiroğlu, Ayhan Kürşat Erbaş

Connecting the notion of foreground in critical mathematics education with the theory of habitus
Tine Wedege

WORKING GROUP 11

Introduction to the papers of WG 11: Comparative studies in mathematics education
Eva Jablonka, Paul Andrews

The case of calculus: Comparative look at task representation in textbooks
Emmanuel Adu-tutu Bofah, Markku Hannula

The teaching of linear equations: Comparing effective teachers from three high achieving European countries
Paul Andrews

Exploratory data analysis of a european teacher training course on modelling
Richard Cabassut, Jean-Paul Villette

Comparison of item performance in a Norwegian study using U.S. developed mathematical knowledge for teaching measures
Arne Jakobsen, Janne Fauskanger, Reidar Mosvold and Raymond Bjuland

Belgian and Turkish pre-service primary school mathematics teachers’ metaphorical thinking about mathematics
Çiğdem Kiliç

Problem solving and open problems in teachers’ training in the French and Mexican modes
Alain Kuzniak, Bernard Parzysz, Manuel Santos-Trigo, Laurent Vivier

What kind of teaching in different types of classes?
Céline Maréchal

Comparing the construction of mathematical knowledge between low-achieving and high-achieving students – a case study
Ingolf Schäfer, Alexandra Winkler

Conceptual metaphors and “grundvorstellungen”: a case of convergence?
Jorge Soto-Andrade, Pamela Reyes-Santander
WORKING GROUP 12

Introduction to the papers of WG 12: History in mathematics education
Uffe Thomas Jankvist, Snezana Lawrence, Constantinos Tzanakis, Jan van Maanen

Uses of history in mathematics education: development of learning strategies and historical awareness
Tinne Hoff Kjeldsen

Classifying the arguments and methodological schemes for integrating history in mathematics education
Constantinos Tzanakis, Yannis Thomaidis

The development of attitudes and beliefs questionnaire towards using history of mathematics in mathematics education
Mustafa Alpaslan, Mine Isiksal, Cigdem Haser

Implementing ‘modern math’ in Iceland – Informing parents and the public
Kristín Bjarnadóttir

Voices from the field: incorporating history of mathematics in Teaching
Kathleen M. Clark

Designing teaching modules on the history, application, and philosophy of mathematics
Uffe Thomas Jankvist

Uses of history in mathematics education: development of learning strategies and historical awareness
Tinne Hoff Kjeldsen

Establishing the ‘meter’ as citizens of French National Assembly during French Revolution
Panayota Kotarinou, Charoula Stathopoulou, Anna Chronaki

Lessons from early 17th century for current mathematics curriculum design
Jenneke Krüger

How much meaning can we construct around geometric constructions?
Snezana Lawrence and Peter Ransom

José Manuel Matos

The Teaching of Mathematics in Portugal in the 18th century – The creation of the 1st faculty of Mathematics in the world
Catarina Motaa, Maria Elfrida Ralhab, Maria Fernanda Estrada

Using students’ journals to explore their affective engagement in a module on the history of mathematics
Maurice OReilly

A cross-curricular approach using history in the mathematics classroom with students aged 11-16
Peter Ransom
WORKING GROUP 13

Introduction to the papers of WG 13: Early years mathematics
Ingvald Erfjord, Ema Mamede, Götz Krummheuer

Issues on children’s ideas of fractions when quotient interpretation is used
Ema Mamede, Manuela Oliveira

Finger-symbol-sets and multi-touch for a better understanding of numbers and operations
Silke Ladel, Ulrich Kortenkamp

Similar but different - investigating the use of MKT in a Norwegian kindergarten setting
Reidar Mosvold, Raymond Bjuland, Janne Fauskanger, Arne Jakobsen

Kindergartners’ perspective taking abilities
Aaltje Berendina Aaten, Marja van den Heuvel-Panhuizen, Iliada Elia

The linguistic coding of Mathematical Supports
Anna-Marietha Hümmer

Analysis of mathematical solutions of 7 year old pupils when solving an arithmetic problem on distribution
Edelmira Badillo, Vicenç Font, Mequè Edo, Núria Planas

Kindergartners’ use of gestures in the generation and communication of spatial thinking
Iliada Elia, Athanasios Gagatsis, Paraskevi Michael, Alexia Georgiou, Marja van den Heuvel-Panhuizen

How do children’s classification appear in free play? A case study
Vigdis Flottorp

ERSTMAL-Fast (early Steps in Mathematics Learning - Family Study)
Ergi Acar

Changing mathematical practice of kindergarten teachers.
Co-learning in a developmental research project
Per Sigurd Hundeland, Martin Carlsen and Ingvald Erfjord

“Looking for tricks”: a natural strategy, early forerunner of algebraic thinking
Maria Mellone

Can you take half? Kindergarten children’s responses
Dina Tirosh, Pessia Tsamir, Michal Tabach, Esther Levenson, and Ruthi Barkai

Investigating geometric knowledge and self-efficacy among abused and neglected kindergarten children
Pessia Tsamir, Dina Tirosh, Esther Levenson, Michal Tabach, and Ruthi Barkai

Playing and learning in early mathematics education – Modelling a Complex relationship
Stephanie Schuler
WORKING GROUP 14

Introduction to the papers of WG 14: University mathematics education
Elena Nardi, Alejandro S. González-Martín, Ghislaine Gueudet, Paola Iannone, Carl Winsløw

Why abstract algebra for pre-service primary school teachers
Eleni Agathocleous

‘Applicationism’ as the dominant epistemology at university level
Berta Barquero, Marianna Bosch, Josep Gascón

Designing alternative undergraduate delivery: oil and massage
Bill Barton

Why do Students go to Lectures?
Christer Bergsten

Designing and evaluating blended learning bridging courses in mathematics
Biehler, R.; Fischer, P.R; Hochmuth, R.; Wassong, Th.

Employing potentialities and limitations of electronic environments:
The case of derivative
Irene Biza, Victor Giraldo

The changing profile of third level service mathematics in Ireland (1997-2010)
Fiona Faulkner, Ailish Hannigan, Olivia Gill

Using CAS based work to ease the transition from calculus to real analysis
Erika Gyöngyösi, Jan Philip Solovej, Carl Winsløw

Undergraduate students’ use of deductive arguments to solve “prove that…” tasks
Paola Iannone, Matthew Inglis

How we teach mathematics: discourses on/in university teaching
Barbara Jaworski and Janette Matthews

What affects retention of core calculus concepts among university students?
A study of different teaching approaches in Croatia and Denmark
Ljerka Jukić, Bettina Dahl (Soendergaard)

University students linking limits, derivatives, integrals and continuity
Kristina Juter

‘Driving noticing’ yet ‘risking precision’: university mathematicians’ pedagogical perspectives on verbalisation in mathematics
Elena Nardi

Threshold concepts: a framework for research in University mathematics education
Kerstin Pettersson

Challenges with visualization: the concept of integral with undergraduate students
Blanca Souto Rubio, Inês Maria Gômez-Chacón

The secondary-tertiary transition: a clash between two mathematical discourses
Erika Stadler
Students’ conceptions of functions at the transition between secondary school and university

Fabrice Vandebrouck

Discourses of functions – university mathematics teaching through a commognitive lens

Olov Viirman

Secondary-tertiary transition and evolutions of didactic contract: the example of duality in linear algebra

Martine De Vleeschouwer, Ghislaine Gueudet

A didactic survey of the Main characteristics of Lagrange’s Theorem in mathematics and in economics

Sebastian Xhonneux, Valérie Henry

A questionnaire for surveying mathematics self-efficacy expectations of prospective teachers

Marc Zimmermann, Christine Bescherer, Christian Spannagel

WORKING GROUP 15

Introduction to the papers of WG 15:

Technologies and resources in mathematics education

Jana Trgalová, Anne Berit Fuglesta, Mirko Maracci, Hans-Georg Weigand

Mathematics student teachers’ pedagogical use of technologies – different taxonomies in the classroom

Nélia Amado

Symbolic generalization in a computer intensive environment: the case of Amy

Michal Tabach

Teachers’ and students’ first experience of a curriculum material with TI-Nspire technology

Per-Eskil Persson

Teachers transforming resources into orchestrations

Paul Drijvers

The use of mathematics software in university mathematics teaching

Iiris Attorps, Kjell Björk, Mirko Radic

Calculators as digital resources

Gilles Aldon

Transitions between micro-contexts of mathematical practices

Vasilis Tsitsos, Charoula Stathopoulou

Function concept and transformations of functions: the role of the graphic calculator

Madalena Consciência, Hélia Oliveira

A survey of technology use: the rise of interactive whiteboards and the mymaths website

Nicola Bretscher

Graphic calculator use in primary schools: an example of an instrumental approach

Per Storfossen

An online games as a learning environment for early algebraic problem solving by upper primary school students

Angeliki Kolovou, Marja van den Heuvel-Panhuizen
Framing a problem solving approach based on the use of computational tools to develop mathematical thinking
Manuel Santos-Trigo, Matías Camacho-Machín

Analysing teachers’ classroom practice when new technologies are in use
Mary Genevieve Billington

Implementation of a multi-touch environment supporting finger symbol sets
Silke Ladel, Ulrich Kortenkamp

Researching technological, pedagogical and mathematical undergraduate primary teachers’ knowledge (TpaCK)
Spyros Doukakis, Maria Chionidou-Moskofoglou, Dimitrios Zibidis

The co-construction of a mathematical and a didactical instrument
Mariam Haspekian

Working with teachers: collaboration in a community around innovative software
Jean-Baptiste Lagrange

Extending the technology acceptance model to assess secondary school teachers’ intention to use Cabri in geometry teaching
Marios Pittalis & Constantinos Christou

Challenges teachers face with integrating ICT with an inquiry approach in mathematics
Anne Berit Fuglestad

Technologies and tools in teaching mathematics to visually impaired students
Iveta Kohanová

A study on mathematics teachers’ use of textbooks in instructional process
Meriç Özgeldi, Erdinç Çakıroğlu

Collective design of an online math textbook: when Individual and collective documentation works meet
Hussein Sabra, Luc Trouche

Developing a competence model for working with symbolic calculators
Hans-Georg Weigand

WORKING GROUP 16

Introduction to the papers of WG 16:
Different theoretical perspectives and approaches in research in mathematics education
Ivy Kidron, Angelika Bikner-Ahsbahs, John Monaghan, Luis Radford, Gérard Sensevy

Research praxeologies ad networking theories
M. Artigue, M. Bosch, J. Gascón

Exploring fragmentation in mathematics education research
Ayshea Craig

Complementing and integrating theoretical tools: a case study concerning poor learners
Nadia Douek

Mathematical objects through the lens of three different theoretical perspectives
Vicenç Font, Uldarico Malaspina, Joaquin Giménez, Miguel R. Wilhelmi
Using different sociocultural perspectives in mathematics teaching developmental research
Simon Goodchild

The possibility of aperspectival research on mathematics learning
Tim Jay

Recovering mathematical awareness by linguistic analysis of variable substitution
Kaenders, R.H., Kvasz, L., Weiss-Pidstrygach, Y.

How a general epistemic need leads to a need for a new construct
A case of networking two theoretical approaches
Ivy Kidrona, Angelika Bikner-Ahsbahs, Tommy Dreyfus

Mathematics learning through the lenses of cultural historical activity theory and
the theory of knowledge objectification
Lionel N. LaCroix

Using practical epistemology analysis to study the teacher’s and students’ joint action
in the mathematics classroom
Florence Ligozat, Per-Olof Wickman, Karim Hamza

Discerning in and between theories in mathematics education
John Mason

Theoretical genesis of an informal meta-theory to develop a way of talking about
mathematics and science education and to connect European and North American literature
John Monaghan

Meaning of mathematical objects: a comparison between semiotic perspectives
Giorgio Santi

Modeling external representations as mediators of meaning in the mathematics classroom
Håkan Sollervall

Combining theories to analyze classroom discourse: a method to study learning process
Michal Tabach Talli Nachlieli

WORKING GROUP 17

Introduction to the papers of WG 17:
From a study of teaching practices to issues in teacher education
Leonor Santos, Claire Berg, Laurinda Brown, Nicolina Malara, Despina Potari, Fay Turner

Primary school teachers’ practices using a same manual written by didactician
Sara Arditi

A study of a problem solving oriented lesson structure in mathematics in Japan
Yukiko Asami-Johansson

Lesson study as a process for professional development: working with teachers to effect
significant and sustained changes in practice
Jenni Back, Marie Joubert

An attempt at defining teachers’ mathematics through research on mathematics at work
Nadine Bednarz, Jérôme Proulx
Adopting an inquiry approach to teaching practice: the case of a primary school teacher
Claire Vaugelade Berg

Mathematical investigations in the classroom: a context for the development of professional knowledge of mathematics teachers
Ana Paula Canavarro, Mónica Patrício

Why do some French teachers propose «problèmes ouverts» in mathematics to their pupils in primary school?
Christine Choquet

The need to make ‘boundary objects’ meaningful: a learning outcome from lesson study research
Dolores Corcoran

Analysis of the teacher’s role in an approach to algebra as a tool for thinking: problems pointed out during laboratorial activities with perspective teachers
Annalisa Cusi, Nicolina A. Malara

The impact of teaching mental calculation strategies to primary PGCE students
Sue Davis

Re-defining HCK to approach transition
Sainza Fernández, Lourdes Figueiras, Jordi Deulofeu, Mario Martínez

Conceptions and practices of mathematical communication
António Guerreir, Lurdes Serrazina

Lesson study in Teacher Education: a tool to establish a learning community
Guðný Helga Gunnarsdóttir, Guðbjörg Pálsdóttir

The use of the empty number line to develop a programme of mental mathematics for primary trainee teachers
Gwen Ineson

Readings of the mathematical meaning shaped in the classroom: exploiting different lenses
Maria Kaldrimidou, Haralambos Sakonidis, Marianna Tzekaki

The nature of preservice teachers’ pedagogical content knowledge
Hulya Kilic

Literacy in mathematics – a challenge for teachers in their work with pupils
Bodil Kleve

Helping in-service teachers analyse and construct mathematical tasks according to their cognitive demand
Eugenia Koleza, Christos Markopoulos, Stella Nika

Professional knowledge related to Big Ideas in Mathematics – an empirical study with pre-service teachers
Sebastian Kuntze, Stephen Lerman, Bernard Murphy, Elke Kurz-Milcke, Hans-Stefan Siller, Peter Winbourne

The role of video-based experiences in the teacher education of pre-service mathematics teachers
Miriam Listo, Olivia Gill
Multicommented transcripts methodology as an educational tool for teachers involved in constructive didactical projects in early algebra

Nicolina A. Malara, Giancarlo Navarra

Laboratory activities in teacher training

Francesca Martignone

Planning teaching activity within a continuous training program

Cristina Martin, Leonor Santos

Mathematics problem solving professional learning through collaborative action research

Joyce Mgombelo, Kamini Jaipal-Jamani

A study of the differences between the surface and the deep structures of math lessons

Edyta Nowińska

Teachers managing the curriculum in the context of the mathematics’ subject group

Cláudia Canha Nunes, João Pedro da Ponte

Prospective mathematics teachers’ noticing of classroom practice through critical events

Despina Potari, Giorgos Psychari, Eirini Kouletsi, Maria Diamantis

Curricular changes in preparation of future teachers – financial mathematics course

Michaela Regecová, Mária Slavičková

Knowing mathematics as a teacher

C. Miguel Ribeiro; José Carrillo

Secondary mathematics teachers’ content knowledge: the case of Heidi

Tim Rowland, Libby Jared, Anne Thwaites

Pre-service teachers learning to assess mathematical competencies

Norma Rubio, Vicenç Font, Joaquim Giménez, Uldarico Malaspina

Moving beyond an evaluative teaching mode: the case of Diana

Rosa Antónia Tomás Ferreira

Preservice elementary teachers’ geometry content knowledge in methods course

Fatma Aslan-Tutak

How to promote sustainable professional development?

Stefan Zehetmeier, Konrad Krainer

Concepts from mathematics education research as a trigger for mathematics teachers’ reflections

Mario Sánchez

Teacher competences prerequisite to natural differentiation

Marie Tichá, Alena Hošpesová

Differences in the propositional knowledge and the knowledge in practice of beginning primary school teachers

Fay Turner
POSTERS COMMUNICATIONS

Posters WG02
Didactical environments “stepping” and “staircase”
 Nad’a Stehliková, Milan Hejnjý, Darina Jirotková

Understanding the infiniti sets of numbers
 Cristian Voica, Florence Mihaela Singer

Posters WG03
Exploring patterns and algebraic thinking
 António Borralho, Elsa Barbosa

Prospective teachers doing modeling activities and interpreting students work
 Neusa Branco

Differentiated learning routes for school algebra using online database systems
 Julia Pilet

The teaching and learning of parameters in families of functions
 Manuel Saraiva

Posters WG05
Learning risk in socio-scientific context
 Hasan Akyuzlu

Future elementary and kindergarten teachers’ knowledge of statistics and of its didactics
 Raquel Santos

Comparing attitudes towards mathematics and statistics of k-10 students: preliminary results
 Assumpta Estrada, Ana Serradó

Posters WG06
Teaching differential equations with modelling
 Guerrero-Ortiz, C., Camacho-Machín, M.

Poster WG08
Beliefs of the usefulness of mathematics and mathematics self-beliefs as important factors for mathematics attitudes
 Peter Vankus

Posters WG09
On the meaning of multiplication for different sets of numbers in a context of visualization
 Raquel Barrera

Gesture and visual-spatial thinking
 Conceição Costa, José Manuel Matos
The evolution of school mathematics discourse as seen through the lens of GCSE examinations
Candia Morgan, Anna Sfard

Self-regulation of students in Mathematics and oral communication in classroom
Silvia Semana, Leonor Santos

Teachers’ endorsed and enacted narratives to promote mathematical communication
Marie Bergholm

Communication – a/the key to mathematics
Birgit Gustafsson

Posters WG10

Family mathematics involvement: drawing from sociological point of view
Javier Díez-Palomar, Sandra Torras-Ortin

Learning mathematics: thoughts and interpretations of students with foreign backgrounds
Petra Svensson

The emergence of cultural mathematics: an ethnomathematical approach in the context of classroom
Joana Latas, Darlinda Moreira

Parental involvement in children’s achievement:
An exploratory study with French 2nd graders in Mathematics
Ana Lobo de Mesquita

Posters WG11

Students’ self-regulation, self-efficacy and mathematical competence in OECD’s PISA
David Pepper

Contrasting prospective teacher education and student teaching in England and Slovakia
Ján Šunderlík, Soňa Čeretková

Posters WG12

Developing a modern mathematics pedagogical content knowledge: the case of telescola in Portugal in the middle 1960’s
Mária Correia de Almeida, José Manuel Matos

A study on the fundamental concept of ‘measure’ and its history
Ana Amaral; Alexandra Gomes; Elfrida Ralha

The Project of Modernization of the Mathematical Initiation in Primary School as curriculum development (1965-1973)
Rui Candeias

Who can understand the gifted students?
A lesson plan based on history to enhance the gifted students’ learning
Ersin İlhan

Teacher training at Pedro Nunes normal secondary school (1956-1969)
José Manuel Matos, Teresa Maria Monteiro
Posters WG13

The pedagogical consequences of a laissez Faire individualistic society
 Judy Sayers
 2967

ICT supported learning of mathematics in kindergarten
 Martin Carlsen, Per Sigurd Hundeland, Ingvold Erfjord
 2969

Posters WG14

The design and implementation of mathematical tasks to promote advanced mathematical thinking
 Sinéad Breen, Ann O'Shea
 2971

Critical multicultural instruction for undergraduate mathematical thinking courses
 Irene M. Duranczyk
 2973

Problem-based learning as a methodology of studying the didactic knowledge of derivatives in undergraduate courses in mathematics for economists
 Moreno, M.M.; Garcia, L., Azcárate, C.
 2975

Some meanings of the derivative of a function
 Perdomo-Díaza, J., Camacho-Machina, M. and Santos-Trigob, M.
 2977

Transition secondary-tertiary level education via Math-Bridge
 Julianna Zsidó, Viviane Durand-Guerrier
 2979

Posters WG15

Chase for a bullet – use of ICT for developing students’ functional thinking
 Antonín Jančařík, Jarmila Novotná, Alena Pelantová
 2981

The challenge of developing a European course for supporting teachers’ use ICT
 Michèle Artigue, Claire Cazes, Françoise Hérault, Gilles Marbeuf, Fabrice Vandebrouck
 2983

Remedial scenarios for online and blended-learning bridging courses
 Rolf Biehler, Pascal R. Fischer, Reinhard Hochmuth, Thomas Wassong
 2985

I2geo.net – a platform for sharing dynamic geometry resources all over Europe
 Jana Trgalova, Ulrich Kortenkamp, Ana Paula Jahn, Paul Libbrecht, Christian Mercat
 Tomás Recio, Sophie Soury-Lavergne
 2987

Mobile technology in mathematics courses for teacher students
 Iveta Kohanová
 2989

Pepimep Project: online database system and differentiated learning routes for school algebra
 Françoise Chenevotot, Brigitte Grugeon-Allys
 2991

Extending the mathematics textbooks analysis: questions of language and ICT
 Carlos Alberto Batista Carvalho, José Manuel Leonardo de Freitas
 2993

Intensive use of ICT in pre-service primary teachers’ professional training in mathematics:Impact on teaching practices
 Jean Baptiste Lagrange, Alexandre Becart
 2995
Posters WG16

Theoretical framework to analyse the problem solving process while handling complex mathematical story problems in primary school
Johannes Groß, Katharina Hohn, Sibel Telli, Renate Rasch, Wolfgang Schnitz
2997

The complexity of advanced mathematical thinking at the non-university level
Miguel Silva, António Domingos
2999

Networking theories: the ‘kom project’ and ‘adding it up’ through the lens of a learning situation
Yvonne Liljekvist and Jorryt van Bommel
3001

A successful combination of COP and CHAT to understand prospective primary mathematics teachers’ learning?
Kicki Skog
3003

Connecting theories to think of plane geometry teaching from elementary to middle school
Marie-Jeanne Perrin-Glorian
3005

Posters WG17

Didactical analysis and citizenship with prospective mathematics teachers
Yuly M. Vanegas M., Joaquin Giménez, Vicenç Font
3007

How to teach mathematical knowledge for teaching
Jorryt van Bommel
3009

Analysing exams mathematical questions
Mário José Miranda Ceia
3011

The practices of prospective teachers in South African and Canadian mathematical literacy teacher education programs: What works and what does not?
Joany Fransman, Joyce Mgombel, Marthie Van der Walt
3013

Teachers’ use of graphing calculators in high school mathematics classroom – the influence of teachers’ professional knowledge
Helena Rocha
3015

Deeper mathematical understanding through teacher and teaching assistant collaboration
Paul Spencer, Julie-Ann Edwards
3017
SOCIAL FUNCTIONS OF SCHOOL MATHEMATICS

David Kollosche

Universität Potsdam, Germany

In this essay, I explore the question which social functions school mathematics might hold. After presenting a criticism of prescriptive functions, the function of imparting mathematical knowledge and its boundaries are presented. A discussion of logic thinking, of alienation in modern societies, and of the functions of school mathematics in technocratic societies in general is presented that broadens the understanding of which social functions school mathematics might hold, leaving many open questions to explore.

RAISING THE QUESTION

Mathematics education is compulsory for all children in modern societies. What should be learnt and why it should be learnt are central questions of mathematics education research worldwide. Answers to these questions may vary in many aspects, but most mathematics education researchers agree on one point: routine calculations are over-represented and mathematics lessons should be more mind-challenging. Depending on perspective, »mind-challenging« may include focusing on creativity, problem solving, proofs and argumentations, applications and modelling, historical and social issues of mathematics, and so on; but, no matter the perspective, most suggest alternatives to routine calculations.49

49 This paper will not discuss the corresponding concepts and show in what way they criticise too much routine calculations. For the purpose of this paper, it suffices to see that mathematics lessons comprehend routine calculations and that alternative concepts, in advocating different activities, are therefore directed against routine calculations. However, this is not to mean that mathematic educators or even mathematical teachers condemn routine calculations altogether.50

50 Allgemeinbildung, literally translated meaning general education, is a highly influential concept in German pedagogy without any conceptual equivalent in the English speaking world.

published by the German Standing Conference of the Ministers of Education and Cultural Affairs and influenced by Heymann’s work – are exemplars of the later.

Addressing what should be done implies that what is being done is not satisfactory. Winter and Heymann certainly belong to those who criticise too much calculating. But while the prescriptive concepts of Winter and Heymann suggest what should be done, they are unable to explain what is being done. Therefore, I ask: Is there any sense in having children master the masses of routine calculations, which we – the community of mathematics education researchers – might regard as being over-represented? Are there any reasons for the contemporary state of school mathematics? Can these explain why the abovementioned »mind-challenging« alternatives are not implemented on a large scale? And would not the answers to these questions strongly influence our ideas of what school mathematics should be like?

Pointing to tradition does not help here. Tradition may show us how the situation came to be, but it does not explain why some things changed while others have not. Therefore, I propose to address the issue in a broader context. Identifying school mathematics as an organ in our interacting, organic society, I raise the question: What are the social functions of school mathematics?

DISCUSSING NÄÏVE ANSWERS

Curricular research offers a division between material education, i.e. mainly imparting knowledge, on the one hand and formal education on the other hand. My thesis is that the role of imparting mathematical knowledge is over-estimated and that further functions must be analysed to develop a comprehensive understanding of school mathematics.

A first approach to these functions might be a sceptical discussion of the concept of competences which curricular standards often use. These competences may already point to social functions of school mathematics, but starting with them creates problems. First, it is yet unclear how (or if) the demanded competences are indeed learned by children – especially when curricular concepts are used as tools for curricular reforms as is the case in the Bildungsstandards im Fach Mathematik –, and how (or if) these competences are indeed used outside school. Second, the focus on these competences might mask other functions of school mathematics that could be more central. Therefore, I suggest a different approach: After a discussion of the boundaries of imparting mathematical knowledge, I will elaborate on insightful connections between mathematical education on the one hand and Aristotelian logic, alienation and technocracy on the other hand. These are the points my studies concentrated on so far. In each case we can ask: What is the social impact of these and how does mathematical education contribute to them?
MATHEMATICAL KNOWLEDGE AND ITS BOUNDARIES

A function of school mathematics could be to have children impart certain mathematical knowledge in order to master certain situations that arise in society. Central questions are: What are these situations? What knowledge suits them? Is this knowledge indeed acquired in school?

A first set of situations that can be mastered mathematically is located in private life. Popular examples are cooking, shopping and trading, investments, or painting walls. A second set could consist of situations from work life that are not mathematics-intensive. Assuming that the mathematical knowledge required to master these situations is acquired in school mathematics, we nevertheless have to admit that the better part of school mathematics used in these situations has been taught after 7 or 8 years of school. For most people, quadratic, exponential, and trigonometric functions are not tools needed in mastering everyday situations in private or work life; neither are linear equation systems, calculus, conditional probability, and so forth. Heymann (2003, p. 104) argues:

In their private and professional everyday lives, adults who are not involved in mathematics-intensive careers make use of relatively little mathematics. Everything beyond the content of what is normally taught up to 7th grade (computing percentages, computing interest rates, rule of three) is practically insignificant in later life.\footnote{Heymann’s thesis was followed by a vivid public discussion when the German red-top newspaper Bild (1995), disregarding the context of Heymann’s work, printing the title »Professor: Too Much Maths is Nonsense« and stated, that »The mathematics adults need has been learned after 7 years of school.«}

After comparing several studies exploring the uses of mathematics in private and work life, Heymann outlines the mathematical concepts that are frequently used (2003, pp. 88-89):

Arithmetic: counting; mastery of basic arithmetical operations (‘in one’s head’ or with paper and pencil, depending on the complexity); calculating with quantities, knowledge of the most important units of measurement, making simple measurements (primarily of time and distance); calculating fractions with simple denominators in unambiguous contexts; calculating decimal fractions; computing averages (arithmetic mean); computing percentages; computing interest rates; using the rule of three; completing arithmetical operations with a pocket calculator; basic skills in estimating and making rough calculations.

Geometry: familiarity with elementary regular figures (circle, rectangle, square, etc.) and objects, as well as with elementary geometrical relationships and properties (perpendicularity, parallelism); ability to interpret and draw simple graphic representations of quantities and their relationships (charts, diagrams, maps) and the relationships between given points using Cartesian coordinate systems.
Mathematics certainly is used to master situations in private and work life, and this mathematics is being taught in school. Here, I must make two points, however. First, only until the seventh year of school, imparting mathematical knowledge can be regarded as a social function for people in non-mathematical jobs. Second, it is yet unclear whether the mathematical knowledge used in private and work life is indeed learned in school.

It is at least doubtful whether the mathematical knowledge used in private and work life is indeed learned in school. In her influential publication *Cognition in practice*, Jean Lave (1988) presents studies of the everyday use of mathematics in private and work life conducted in Liberia and the USA. She doubts whether »schooling is a font of transferable abilities« (p. xiii) and develops her thesis that mathematical knowledge needed to master situations in private and work life is learned »in practice« rather than in school. More recent studies, for example studies on the numeracy of nurses in the UK (see Coben, 2010, p. 14), support Lave’s thesis. Heymann shares this view (2003, p. 98):

A number of factors indicate that specific vocational mathematical qualifications tend to be learned more implicitly on the job and that thus the persons involved often remain unaware of them.

The thoughts presented above leave only a relatively small group of people engaged in mathematics-intensive professions, for whom higher mathematical qualification in school might be useful. Interpreted from a social perspective, it is possible that a function of school mathematics is to prepare as many children as possible for mathematics-intensive professions. It then would be reasonable to teach all children mathematics beyond their seventh year of school, attempting to maximise the number of children entering mathematics-intensive professions.

ENCULTURATION BEYOND KNOWLEDGE

Imparting mathematical knowledge is not as dominant a social function of school mathematics as might be expected. A critical examination of the sets of competences that curricular standards want children to learn in school mathematics suggests that competences such as »solving problems«, »modelling«, »using formal aspects of mathematics« or even »thinking logically« point at the nature of our engagement with the world, of our thinking. Our worldviews and the nature of our thinking depend on the society (or culture) in which we learned thinking and perceiving the world. This learning process can be called *enculturation*53.

53 »Enculturation« as a terminology, derives from cultural studies. Sociologists prefer to speak about »socialisation« while educators often prefer »education«, although the latter has a strong intentional meaning.
Imparting mathematical knowledge is a part of enculturation, as it enables and encourages people to perceive and approach the world in a certain way, namely mathematically. Unfortunately, there is little literature on enculturation in school mathematics, though the work of, e.g., Roland Fischer, Alan Bishop and Ole Skovsmose is well acknowledged. However, Fischer’s work (e.g. 2006) is very fragmentary and does not draw a comprehensive picture. Bishop’s (1988) chapters on the »Values of Mathematical Culture« and on »Mathematical Culture and the Child« are highly important for my issue, but I do not want to discuss them in this paper. Skovsmose’s work (2005) raises inspiring questions about the social functions of school mathematics, but he does not come to convincing answers.

Further related work are the analyses (and criticism) of »rationalism« and the role of mathematics in modern society in the work of Max Weber (1921/2008), as well as Max Horkheimer and Theodor W. Adorno (1944/1997), the sociologic analysis of mathematicians in practice by Bettina Heintz (2000) and the critical study concerning the legitimacy of modern mathematics by Philipp Ullmann (2008). Horkheimer and Adorno analyse and criticise how the ideas of Enlightenment shape our thinking and organise our society. Ullmann’s work is strongly based on that of Horkheimer and Adorno but lays more emphasis on mathematics and its applications in society. Heintz’ studies come to the conclusion that the modern mathematician is characterised by his will to avoid contradictions and that he therefore chooses a method that is intended to avoid contradictions, namely the logical proof. However, her work hardly draws attention to the social and educational implications of her results.

I do not want to discuss or present this literature in any more detail. Instead, I present my current, ever-evolving thinking of further social functions of school mathematics.

HIERARCHY AND LOGIC

The first thought I offer reaches back into the depths of history on human culture, specifically, to the development of hierarchical thinking. Roland Fischer (2006, pp. 133–141), building on the work of the Austrian philosopher Gerhard Schwarz (2007), describes *hierarchy* as a certain system of relationships between people of a certain community. In the history of human culture, the genesis of hierarchies can be observed wherever a community transitioned from a nomadic “tribe” to a fixed “state”. The organising principle for tribes was based on kinship, setting a limit to the growth of a community. So, on the one hand, social growth and the development of states were only possible where hierarchies were established. On the other hand, the idea of organising communities hierarchically could only spread because the developing state communities were successful.
Living in a society that is ordered hierarchically is a powerful everyday experience: People learn that for every (but some) person(s) there is a person who decides what to do and what not to do; that actions are either allowed or forbidden; and that everyone is held responsible for his obedience or disobedience, neglecting the situation that led to her or his actions.

Living in such a society leaves its marks not only on the principles of our everyday actions but also on the principles of our everyday thinking. The idea of hierarchy became an element of thinking, of perceiving the world. For example, today we consider it normal to think of a husky as a dog, of a dog as a mammal, and so on. In fact, the biological classification is totally hierarchical.

In ancient Greece, scholars became aware of the principles of the thinking invoked by hierarchies. The logic of Aristotle is a description and analysis of this logical thinking. He postulates, for example, that every statement is either true or false. This may mean: allowed or forbidden in thinking. Furthermore, for every (but some) statement(s) we have statements on the basis of which we can decide whether the first statement is true or false. Eventually, the truth or falsity of a statement depends on the system of logic only, neglecting any (e. g. everyday life) connotations the statement may have.

While logic thinking was already a topic of ancient Greece philosophy, it was not until the beginning of modernity that logical thinking became conventionalised as the only “right” thinking with mathematics as its purest manifestation. René Descartes, the French mathematician and philosopher, may be considered the founder of this modern rationalism. In his Rules for the direction of the mind, he states, that »arithmetic and geometry alone are free of any error of falsity or uncertainty«54 (1629/1959, pp. 8–9) and that those who seek the right way to truth must not engage with any matter that does not allow them to obtain a certainty comparable to that of arithmetic and geometric proofs.

This kind of thinking features a worldview that relies on antagonisms, causalities, and pre-determined, static concepts. It has certainly helped mankind to increase its understanding and possibilities of handling the world, but at the same time, it has shaped our thinking and perceiving the world in a certain way, leaving black spots and possibly discrediting those who think differently.

Logical thinking is not without alternative; it is not the only way of making sense. This alternative becomes clear when we look at non-Western societies (see Bishop 1988 for examples) or acknowledge that people had indeed thought in tribal communities before hierarchies and logic thinking evolved. The relentless division

54 Translated into English from the German translation of the Latin original \textit{Regulae ad directionem ingenii} from 1629 by D. K.
into true or false has even been criticised from within mathematics. For instance, at the beginning of the twentieth century, the Dutch mathematician L. E. J. Brouwer (1918) began to create mathematics without the assumption that every statement must be either true or false.55

Connecting my aforementioned (somewhat oversimplified) analysis of logic to school mathematics, we might ask: Is logical thinking represented here, \textit{more} than in any other school subjects, maybe even \textit{only} here? Does school mathematics prepare children to think and act in a logically thinking and acting society? Extending the connection more critically, we might ask: What worldview do we create by teaching the dominance of logical thinking? And eventually, what does it mean for children who develop alternatives to “our” logic?

MODERNITY AND ALIENATION

At the verge to modernity, industrialisation made everyday life change dramatically. The medieval man (or woman) was a peasant or a craftsman, subsisting on what he produced. Although committed to kin, church, and state, he was the sovereign of his everyday life, making nearly every decision, especially the economic ones, on his own. This personal freedom was lost when more and more people began working in factories, where they had to perform prescribed repetitious work at a prescribed time of the day without causing any problems that might interfere with the production of the factory.

But it would be short sighted to assign the qualities of obedience, punctuality, and reliability in doing repetitious work to the factory worker of early industrialism alone. Contemporary work life requires the same qualities, and the modern employee must be enculturated to think, feel and act accordingly. The essence of this performance, which can be named \textit{alienation}56, is that a person must not act according to his actual feelings and wishes. Alienation is necessary for cooperative work where the work of many depends on the cooperation and reliability of the individual.

Primary and middle schools that emerged at the time of industrialisation took over a function of enculturation, preparing children to endure the alienation necessary for factory work. School mathematics was included from the very beginning and might have a particular role in the process of alienation so typical for the modern man and woman: Do the command-like masses of mathematics exercises drill obedience (cf. Skovsmose 2005)? Does the lack of individualisation in the mathematics classroom – in the process of teaching as well as in the nature of the answers expected from

\begin{footnotesize}
\begin{itemize}
\item[55] In Brouwer’s logic, statements can be neither true nor false. But still, they cannot be both true and false.
\item[56] Alienation here is understood in a slightly broader sense than in Marxian terms.
\end{itemize}
\end{footnotesize}
children — represent the factory’s disregard for individual concerns? And to return to the beginning of this essay: Do routine mathematics calculations serve a social function, e. g., developing the ability and willingness to perform repetitious routine tasks whose broader sense might not be understood and/or favoured?

MODERN GOVERNMENT AND TECHNOCRACY

Modern government\(^{57}\) has often been interpreted under the term *technocracy*. Technocrats (i.e., scientific specialists of a certain domain) name and determine the urgent questions of our time, planning work, health systems, education, economy, and so forth. Considering the aforementioned discussion, we may register that technocracy features a certain way of thinking; that is, logical thinking, and requires that people perform in a predictable, alienated fashion. Specifically, a technocracy requires people who follow rules which are not set up by themselves but by experts. (i. e., the technocrats).

Technocratic decision-making depends a lot on mathematics. Mathematical models are used to describe, prescribe, and predict technical, economical, and social matters. For example, medical studies claim that the effect of a new medication is twice as high as the old, the 2% increase of the GDP shows that the economy is doing well, or income taxes must be raised because the costs of the health system exceed the budget by 2 billion Euros. We accept these decisions, although we do not fully understand the justifications used.

But technocracy is nothing *imposed* on people; it is *lived* by people. Technocracy requires people to trust in it and it requires technocrats. Concerning the issue of trust, we might ask: How do people come to trust in mathematical justifications? Do people consider mathematics especially trustworthy?\(^{58}\) And if so, do they develop this trustworthy attitude in school mathematics?

Concerning the issue of technocrats, another function of school mathematics can be identified. School mathematics might not only practice logical thinking, it might also select those children able to thinking logically, allocating the special few to technocrat positions in society. Ole Skovsmose (2005), in his book *Travelling Trough Education: Uncertainty, Mathematics, Responsibility*, raises the corresponding questions (p. 11):

Could it be that mathematics education in fact acts as one of the pillars of the technological society by preparing well that minority of students who are to become ‘technicians’, quite independent of the fact that a majority of students are left behind?

\(^{57}\) ‘Government’ here means any form of decision-making that other people depend on, not only in the executive of a state.

\(^{58}\) Here, I omit an excessive, yet illuminating, discussion about the certainty and legitimacy of mathematics (cf. Skovsmose, 2005; Ullmann, 2008).
Could it be that mathematics education operates as an efficient social apparatus for selection, precisely by leaving behind a large group of students as not being ‘suitable’ for any further and expensive technological education?

FINAL THOUGHTS

In this essay, I have argued that school mathematics might have the social function of identifying, selecting, and allocating children, as well as preparing children for the contemporary predominant society in terms of

- developing children’s mathematical knowledge,
- shaping children’s thinking towards a form we may call logical, and
- shaping children’s feeling towards a form that supports technocracy and living in a society that requires alienation.

As the works cited suggest (e.g., Skovsmose, 2005), many of these points have been discussed in the literature. These discussions are limited and often isolated, and fail to draw a cohesive picture of the social functions of school mathematics. Moreover, the discussions are highly evaluative, especially when it comes to people who suffer from mathematics education and are interpreted as being suppressed by a reign of technocrats. Although our own feelings and ideals are important, I am afraid that a perspective that places emphasis on the ethics of mathematics education might silence possible explanations that are necessary for a comprehensive understanding of the social functions of school mathematics.

Moreover, in this essay, I raise more questions rather than provide answers. The purpose of the essay, however, was to only mark the trajectory of my research project. My project aims not only to determine probable answers to the questions raised but also to develop a cohesive understanding of the social functions of school mathematics. This project requires not only further research on the functions discussed but also the development of deeper understandings of the intellectual concepts on the basis of which functions of school mathematics might be discussed.

REFERENCES

Working Group 10

